Three conjectures about primality testing for Mersenne, Wagstaff and Fermat numbers
 based on cycles of the Digraph under $x^{2}-2$ modulo a prime

Tony Reix
tony.reix@laposte.net
2009, 2nd of February. Updated 2009, 8th of March.

- Version 0.6

Conjecture 1 (Mersenne numbers) is mine, based on my work on the use of the Cycles of the Digraph under $x^{2}-2$ modulo a Mersenne prime for primality testing.
Conjectures 2 (Wagstaff numbers) and 3 (Fermat numbers) are Anton Vrba's (plus some improvements by myself) and they are based on my work on Conjecture 1.
Note that I have provided a proof for the sufficiency of Conjecture 1 and that Robert Gerbicz has provided a proof for the sufficiency of Conjectures 2 and 3. "Dodo" has noticed the need of the complementary condition. Anton Vrba has provided a proof for the sufficiency of Conjecture 2, but failed to prove the converse. So, only are missing the necessity part (the most difficult) of the three conjectures !

Here after, q is a prime >3 and n is an integer >1.
Conjecture $1 \quad S_{0}=3^{2}+1 / 3^{2}, S_{i+1}=S_{i}^{2}-2\left(\bmod M_{q}\right)$

$$
M_{q}=2^{q}-1 \quad \text { is a prime iff } S_{q-1} \equiv S_{0}\left(\bmod M_{q}\right)
$$

and iff there is no integer $0<i<q-1$ for which $S_{i} \equiv S_{0}\left(\bmod M_{q}\right)$
And we have: $\quad \prod_{1}^{q-1} S_{i} \equiv 1\left(\bmod M_{q}\right)$ when M_{q} is a prime.
Conjecture $2 \quad N_{q}=2^{q}+1 . S_{0}=1 / 4, S_{i+1}=S_{i}^{2}-2\left(\bmod N_{q}\right)$

$$
W_{q}=\frac{N_{q}}{3} \quad \text { is a prime iff } S_{q-1} \equiv S_{0} \quad\left(\bmod W_{q}\right)
$$

and iff there is no integer $0<i<q-1$ for which $S_{i} \equiv S_{0}\left(\bmod N_{q}\right)$
And we have: $\quad \prod_{1}^{q-1} S_{i} \equiv 1\left(\bmod W_{q}\right)$ when W_{q} is a prime.
Conjecture $3 S_{0}=1 / 4, S_{i+1}=S_{i}^{2}-2\left(\bmod F_{n}\right)$

$$
F_{n}=2^{2^{n}}+1 \quad \text { is a prime iff } S_{2^{n}-1} \equiv S_{0} \quad\left(\bmod F_{n}\right)
$$

and iff there is no integer $0<i<2^{n}-1$ for which $S_{i} \equiv S_{0}\left(\bmod F_{n}\right)$
And we have: $\prod_{1}^{2^{n}-1} S_{i} \equiv-1\left(\bmod F_{n}\right)$ when F_{n} is a prime.

Note that $3 / 2\left(\bmod W_{q}\right)$ can be used as seed instead of $1 / 4\left(\bmod W_{q}\right)$ for Wagstaff numbers, and that $-3 / 2\left(\bmod F_{n}\right)$ can be used as seed instead of $1 / 4\left(\bmod F_{n}\right)$ for Fermat numbers.

1 PARI/gp code

Note that the verification that $S \neq S_{0}$ is not necessary at each step. For Mersenne and Wagstaff numbers, it is necessary only when $i \mid q-1$. Since $2 \mid q-1$, at least it must be done every even steps, but also for all odd steps that divide $q-1$. Probably an easy way is to check at all steps ! For Fermat numbers, since $2^{n}-1$ is odd, there are much less steps where it is necessary. But such a verification has a very low computational cost !

```
Conj1(q) = {
    M=2^q-1;
    S0=Mod(3^2+1/3^2,M);
    print(S0);
    S=S0;
    for(i=1, q-1,
        S=Mod(S^2-2,M);
        print(S);
        if(S==S0 && i<q-1,print("Not prime"););
    );
    if(S==S0,print("Prime !"),print("Not prime"););
}
Conj2(q) = {
    N=2^q+1;
    W=N/3;
    SO=Mod(1/4,N);
    print(Mod(SO,W));
    SOW=Mod(S0,W);
    S=S0;
    for(i=1, q-1,
        S=Mod(S^2-2,N);
        print(Mod(S,W));
        if(Mod(S,W)==SOW && i<q-1,print("Not prime"););
    );
    if(Mod(S,W)==SOW,print("Prime !"),print("Not prime"););
}
Conj3(n) = {
    F=2^2^n+1;
    S0=Mod(1/4,F);
    print(SO);
    S=S0;
    for(i=1, 2^n-1,
```

```
    S=Mod(S^2-2,F);
    if(S==SO && i<2^n-1,print("Not prime"););
    print(S);
    );
    if(S==S0,print("Prime !"),print("Not prime"););
}
```


2 Examples for Mersennes

$q=5, M_{5}=31$
$\left(\bmod M_{5}\right) S_{0}=16 \stackrel{1}{\mapsto} 6 \stackrel{2}{\mapsto} 3 \stackrel{3}{\mapsto} 7 \stackrel{4=q-1}{\mapsto} 16=S_{0}$
$q=7, M_{7}=127$
$\left(\bmod M_{7}\right) S_{0}=122 \stackrel{1}{\mapsto} 23 \stackrel{2}{\mapsto} 19 \stackrel{3}{\mapsto} 105 \stackrel{4}{\mapsto} 101 \stackrel{5}{\mapsto} 39 \stackrel{6=q-1}{\mapsto} 122=S_{0}$
$q=11, M_{11}=2047=23 \times 89$
$\left(\bmod M_{11}\right) S_{0}=464 \stackrel{1}{\mapsto} 359 \stackrel{2}{\mapsto} 1965 \stackrel{3}{\mapsto} 581 \stackrel{4}{\mapsto} 1851 \stackrel{5}{\mapsto} 1568 \stackrel{6}{\mapsto} 175 \stackrel{7}{\mapsto}$ $1965=S_{2} \stackrel{8}{\mapsto} 581 \stackrel{9}{\mapsto} 1851 \stackrel{10=q-1}{\longmapsto} 1568 \neq S_{0}$
Note that $S_{10}-S_{0}=1568-464=2^{4} \times 3 \times 23$ where 23 is a factor of M_{11}.
Note that there is a loop of length 5 (dividing $q-1=10$) starting at S_{2} and ending at S_{6}.
Note that $\prod_{i=1}^{10} \equiv 622 \neq 1\left(\bmod M_{11}\right)$ and that $\prod_{i=2}^{6} \equiv-1\left(\bmod M_{11}\right)$.
Note that $622^{2} \equiv 1\left(\bmod M_{11}\right)$ and thus $1 / 622 \equiv 622\left(\bmod M_{11}\right)$.
$q=13, M_{13}=8191$
$\left(\bmod M_{13}\right) S_{0}=7290 \stackrel{1}{\mapsto} 890 \stackrel{2}{\mapsto} 5762 \stackrel{3}{\mapsto} 2519 \stackrel{4}{\mapsto} 5525 \stackrel{5}{\mapsto} 5957 \stackrel{6}{\mapsto} 2435 \stackrel{7}{\mapsto}$ $7130 \stackrel{8}{\mapsto} 3552 \stackrel{9}{\mapsto} 2562 \stackrel{10}{\mapsto} 2851 \stackrel{11}{\mapsto} 2727 \stackrel{12=q-1}{\longmapsto} 7290=S_{0}$
$q=23, M_{23}=8388607$
$\left(\bmod M_{23}\right) S_{0}=1864144 \stackrel{1}{\mapsto} \ldots \stackrel{22=q-1}{\mapsto} 5115651 \neq S_{0}$
Note that $S_{22}-S_{0}=7 \times 47 \times 9883$ where $47 \mid M_{23}$.
But no more interesting properties for greater composite Mersenne numbers. M_{11} and M_{23} seem special.

3 Examples for Wagstaffs, seed $=3 / 2$

Hereafter: $S_{0}=3 / 2$ and $S_{1}=1 / 4$.
$q=5, W_{5}=11$
$\left(\bmod W_{5}\right) S_{0}=7 \stackrel{1}{\mapsto} 3 \stackrel{2}{\mapsto} 7 \stackrel{3}{\mapsto} 3 \stackrel{4=q-1}{\longmapsto} 7=S_{0}$
$q=7, W_{7}=43$
$\left(\bmod W_{7}\right) S_{0}=23 \stackrel{1}{\mapsto} 11 \stackrel{2}{\mapsto} 33 \stackrel{3}{\mapsto} 12 \stackrel{4}{\mapsto} 13 \stackrel{5}{\mapsto} 38 \stackrel{6=q-1}{\mapsto} 23=S_{0}$
$q=11, W_{11}=683$
$\left(\bmod W_{11}\right) S_{0}=343 \stackrel{1}{\mapsto} 171 \stackrel{2}{\mapsto} 553 \stackrel{3}{\mapsto} 506 \stackrel{4}{\mapsto} 592 \stackrel{5}{\mapsto} 83 \stackrel{6}{\mapsto} 57 \stackrel{7}{\mapsto} 515 \stackrel{8}{\mapsto}$ $219 \stackrel{9}{\mapsto} 149 \stackrel{10=q-1}{\longmapsto} 343=S_{0}$

4 Examples for Fermats, seed $=-3 / 2$
Hereafter: $S_{0}=-3 / 2$ and $S_{1}=1 / 4$.
$n=2, F_{2}=17$
$\left(\bmod F_{2}\right) S_{0}=7 \stackrel{1}{\mapsto} 13 \stackrel{2}{\mapsto} 14 \stackrel{3=2^{n}-1}{\mapsto} 7=S_{0}$
$n=3, F_{3}=257$
$\left(\bmod F_{3}\right) S_{0}=127 \stackrel{1}{\mapsto} 193 \stackrel{2}{\mapsto} 239 \stackrel{3}{\mapsto} 65 \stackrel{4}{\mapsto} 111 \stackrel{5}{\mapsto} 240 \stackrel{6}{\mapsto} 30 \stackrel{7=2^{n}-1}{\mapsto} 127=$ S_{0}

