A property dealing with the order of 3 modulo a Mersenne prime

Tony Reix (tony.reix@laposte.net)
ZetaX (AOPS forum)

2008, 8th of March

In May of 2006, based on experimental data I provided, ZetaX (his "UserName" on the Art of Problem Solving and Mathlinks Maths forums) proved the following theorem:

Theorem 1 (ZetaX)

$$
\operatorname{order}\left(3, M_{q}\right)=2\left[\eta\left(3, M_{q}\right)-1\right] .
$$

1 Definitions

$\eta(b, N)$ is the number of distinct numbers $b^{n}+1 / b^{n}(\bmod N)$. $\operatorname{order}(b, N)$ is the least n such that $b^{n} \equiv 1(\bmod N)$. $M_{q}=2^{q}-1$ is a Mersenne prime.

2 Proof by ZetaX

Let p be any odd prime. And let $f(x):=x+\frac{1}{x}(\bmod p)$.
Then we want the size (lets call it: $\eta(k, p)$) of the set $\left\{f\left(k^{n}\right) \mid n \in \mathbb{N}\right\}$.
First lets find out how often $f(x) \equiv f(y)(\bmod p)$ with $x, y \not \equiv 0(\bmod p)$ happens. This means: $x+\frac{1}{x} \equiv y+\frac{1}{y}(\bmod p) \Longleftrightarrow x^{2} y+y \equiv x y^{2}+x$ $(\bmod p) \Longleftrightarrow(x y-1)(x-y) \equiv 0(\bmod p)$. This means that either $x \equiv y$ $(\bmod p)$, the trivial case, or $x y \equiv 1(\bmod p)$. But, when $x \equiv \pm 1(\bmod p)$, then only the case $x \equiv y(\bmod p)$ can occur.
Look at the set $\operatorname{Pow}(k):=\left\{k^{n}(\bmod p) \mid n \in \mathbb{Z}\right\}$ (we can use \mathbb{Z} instead of \mathbb{N} because of Fermat's Little Theorem). It has size $|\operatorname{Pow}(k)|=\operatorname{ord}(k, p)$.
Additionally, we can pair up the elements $k^{n}(\bmod p)$ and $k^{-n}(\bmod p)$ for each n, since they give the same value $f\left(k^{n}\right) \equiv f\left(k^{-n}\right)(\bmod p)$, and only those are equal (note that $1,-1(\bmod p)$ will be left alone, but each noted as "pair" with one element).

Since different pairs give different values, we have: $\eta(k, p)=$ number of such pairs.

Thus when $-1 \in \operatorname{Pow}(k)\left(1\right.$ is always in the set), there will be $\frac{\operatorname{ord}(k, p)-2}{2}+2=$ $\frac{\operatorname{ord}(k, p)+2}{2}$ pairs, thus by the above: $\eta(k, p)=\frac{\operatorname{ord}(k, p)+2}{2} \Longleftrightarrow 2 \eta(k, p)=$ $\operatorname{ord}(k, p)+2$.
Similar when -1 is not in the set: $2 \eta(k, p)=\operatorname{ord}(k, p)+1$.
This for example gives $\eta(3,7)=4$.
To find out if -1 is in the set, we need to know if the order of $k(\bmod p)$ is even or odd (this suffices to know: when $\operatorname{ord}(k, p)$ would be odd, we couldn't have $2 \eta(k, p)=\operatorname{ord}(k, p)+2(\bmod 2)$, and analogous for the other case).
When s is the biggest integer with $2^{s} \mid p-1$, we could calculate $k^{\frac{p-1}{2^{s}}}(\bmod p)$ (since $\frac{p-1}{2^{s}}$ is the biggest odd divisor of $\left.p-1\right)$ and look if it is $1(\bmod p)$ or not $($ the order is odd iff it is $1(\bmod p))$.
When $4 \nmid p-1$, we just ask whether k is a quadratic residue $(\bmod p)$ or not, which can be checked by Jacobi symbols.

Special case $k=3$ and $p=2^{q}-1$: then $4 \nmid p-1$. Thus we use Legendre symbols (Jacobi is not needed since both numbers are prime) and the law of quadratic reciprocity: $\left(\frac{3}{2^{q}-1}\right)=-\left(\frac{2^{q}-1}{3}\right)=-1$. This shows that the order of $3(\bmod p)$ is even.

Thus for Mersenne primes $p=M_{q}$, it is: $2 \eta(3, p)=\operatorname{ord}(3, p)+2$.

