A Fermat-like sequence

Tony Reix (Tony.Reix@laposte.net) 2005, 8th of May (v0.7)

1 Definition of the Serie

This serie has been studied by Yannick Saouter in report N2728 of INRIA in 1995 (http://www.inria.fr/rrrt/rr-2728.html). Saouter has shown that this serie exhibits the same kind of properties than the Fermat numbers.

$$
\begin{gathered}
a_{n}=4^{n}+2^{n}+1 \\
A_{n}=4^{3^{n}}+2^{3^{n}}+1
\end{gathered}
$$

2 Properties (Saouter)

$$
\left.a_{n} \text { prime } \Longrightarrow n=3^{k} \quad \text { (FLS. } 1\right)
$$

A_{n} prime $\Longleftrightarrow \exists k \geq 2 / J\left(k, A_{n}\right)=-1$ and $k^{\left(A_{n}-1\right) / 2} \equiv-1\left(\bmod A_{n}\right) \quad$ (FLS.2)

$$
\begin{array}{r}
A_{n} \text { prime } \Longleftrightarrow 5^{\left(A_{n}-1\right) / 2} \equiv-1 \quad\left(\bmod A_{n}\right) \\
A_{n+1}=3+A_{n}\left(2^{4.3^{n}}-2^{3.3^{n}}+2.2^{3^{n}}-2\right) \\
2^{3^{n+1}}-1=A_{n}\left(2^{3^{n}}-1\right) \quad(\text { FLS. } 5) \tag{FLS.6}
\end{array}
$$

Numbers A_{n} are pairwise relatively prime. (FLS.6)
p prime, $p \mid A_{n} \Longrightarrow p \equiv 1\left(\bmod 2 \times 3^{n+1}\right)$

$$
\begin{equation*}
A_{n} \equiv 3\left(\bmod A_{i}\right), \quad i=0 \ldots n \tag{FLS.8}
\end{equation*}
$$

3 Properties (Reix)

$$
\begin{array}{r}
\prod_{i=0}^{n} A_{i}=2^{3^{n+1}}-1 \\
2\left(2^{3^{n}-1}+1\right) \prod_{i=0}^{n-1} A_{i}=A_{n}-3 \tag{FLR.2}
\end{array}
$$

$$
2^{3^{n+1}} \equiv 1 \quad\left(\bmod A_{i}\right), \quad i=0 \ldots n \quad(\text { FLR. } 3)
$$

The number of digits in A_{n} is: $\approx\left\lfloor 2 \times 3^{n} \log (2)+1\right\rfloor \approx\left\lfloor 3^{n} \times 0.60206\right\rfloor+1 \quad$ (FLR.4)

$$
\begin{gather*}
A_{n} \equiv 1\left(\bmod 2^{3^{n}} 3^{n+1}\right) \quad \text { (FLR.5) } \\
A_{i}-1 \mid A_{n}-1, i=0 \ldots n \quad \text { (FLR.6) } \\
A_{n}=1+2^{3^{n}} 3^{n+1} \prod_{i=0}^{n-1} K_{i}, n>0 \quad \text { where: } K_{i}=\frac{2^{2.3^{i}}-2^{3^{i}}+1}{3} \tag{FLR.7}\\
K_{i}=1+2.3^{i+1} L_{i} \prod_{j=0}^{i-1} K_{j}, i>0 \quad \text { where: } L_{i}=\frac{2^{3^{i}-1}-1}{3} \tag{FLR.8}\\
3 K_{i}=\frac{K_{i+1}-1}{K_{i}-1} \frac{L_{i}}{L_{i+1}} \quad \text { (FLR.9) } \tag{FLR.9}\\
A_{n}=1+2^{3^{n}-1} \frac{K_{n}-1}{L_{n}} ; 2^{3^{n}}+1=\frac{K_{n}-1}{2 L_{n}}=3^{n+1} \prod_{i=0}^{n-1} K_{i} \tag{FLR.10}\\
p \text { prime, } p \mid A_{n} \Longrightarrow p \equiv \pm 1(\bmod 8) \quad(\text { FLR.11) }
\end{gather*}
$$

Proof of (FLR.1):

By using recursively (FLS.5) and (FLR.1), we have:
$2^{3^{n+1}}-1=A_{n} A_{n-1}\left(2^{3^{n-1}}-1\right)=\ldots=A_{n} A_{n-1} \ldots A_{1} A_{0}\left(2^{3^{0}}-1\right)=\prod_{i=0}^{n} A_{i}$

Proof of (FLR.2):

By using (FLS.4), we have:
$A_{n+1}=3+A_{n}\left(2^{3^{n+1}+3^{n}}-2^{3^{n+1}}+2\left(2^{3^{n}}-1\right)\right)$
$A_{n+1}=3+A_{n}\left(2^{3^{n+1}}\left(2^{3^{n}}-1\right)+2\left(2^{3^{n}}-1\right)\right)$
$A_{n+1}=3+A_{n}\left(\left(2^{3^{n}}-1\right)\left(3^{3^{n+1}}+2\right)\right)$
$A_{n+1}=3+A_{n}\left(\prod_{i=0}^{n-1} A_{i}\right) 2\left(2^{3^{n+1}-1}+1\right)$
$A_{n+1}=3+2\left(2^{3^{n+1}-1}+1\right) \prod_{i=0}^{n} A_{i}$

Proof of (FLR.3):

It comes from (FLR.1).
(FLR.4):
$A_{n} \approx 2^{2 \times 3^{n}}$
The number of digits in A_{n} is more than $10,000,000$ for $n=16: \approx 25,916,708$.

Proof of (FLR.5):

By (FLS.7), we have: $A_{n} \equiv 1\left(\bmod 3^{n+1}\right)$.
Since: $A_{n}=1+2^{3^{n}}\left(2^{3^{n}}+1\right)$, we have: $A_{n} \equiv 1\left(\bmod 2^{3^{n}}\right)$.

Proof of (FLR.6) and (FLR.7):

Since $2^{3} \equiv-1(\bmod 3)$ and $2^{3^{n}}=\left(2^{3}\right)^{3^{n-1}}$, we have: $2^{3^{n}} \equiv-1(\bmod 3)$.
And finally: $2^{2.3^{n}}-2^{3^{n}}+1 \equiv(-1)^{2}-(-1)+1 \equiv 0(\bmod 3)$.
We have: $A_{n}-1=2^{3^{n}}\left(2^{3^{n}}+1\right)$, and $A_{n+1}-1=2^{3^{n+1}}\left(2^{3^{n+1}}+1\right)$. Since: $2^{3^{n+1}}+1=\left(2^{3^{n}}+1\right)\left(2^{2.3^{n}}-2^{3^{n}}+1\right)$, we have:

$$
\begin{gathered}
\left(A_{n+1}-1\right)=2^{2.3^{n}}\left(2^{2.3^{n}}-2^{3^{n}}+1\right)\left(A_{n}-1\right) \\
\left(A_{n+1}-1\right)=2^{2 \sum_{i=0}^{n} 3^{i}} \prod_{i=0}^{n}\left(2^{2.3^{i}}-2^{3^{i}}+1\right)\left(A_{0}-1\right) \\
\left(A_{n+1}-1\right)=2^{1+2 \sum_{i=0}^{n} 3^{i}} 3^{1+n+1} \prod_{i=0}^{n} \frac{2^{2.3^{i}}-2^{3^{i}}+1}{3}
\end{gathered}
$$

Let $\gamma_{n}=1+2 \sum_{i=0}^{n-1} 3^{i}$. Let's prove that $\gamma_{n}=3^{n}$.
$\gamma_{1}=1+2(1)=3^{1}$.
$\gamma_{n+1}=1+2 \sum_{i=0}^{n} 3^{i}=1+2 \sum_{i=0}^{n-1} 3^{i}+2 \times 3^{n}=\gamma_{n}+2 \times 3^{n}=3^{n}(1+2)=3^{n+1}$.
So we have:

$$
A_{n}=1+2^{3^{n}} 3^{n+1} \prod_{i=0}^{n-1} K_{i}, n>0 \quad \text { where: } K_{i}=\frac{2^{2.3^{i}}-2^{3^{i}}+1}{3}
$$

Proof of (FLR.8), (FLR.9) and (FLR.10):
Since $2^{2} \equiv 1(\bmod 3)$ we have $2^{3^{i}-1}-1 \equiv\left(2^{2}\right)^{k}-1 \equiv 1-1 \equiv 0(\bmod 3)$.
The binary representation of L_{i} is: $[10101 \ldots 10101]_{2}=\left[1(01)^{3\left(3^{i-1}-1\right) / 2}\right]_{2}$.
We first prove: $\left(K_{i+1}-1\right) L_{i}=3\left(K_{i}-1\right) K_{i} L_{i+1}$.

$$
\begin{aligned}
& \left(K_{i+1}-1\right) L_{i}=\frac{1}{3^{2}}\left(2^{2 \times 3^{i+1}}-2^{3^{i+1}}-2\right)\left(2^{3^{i}-1}-1\right) \\
& \quad=\frac{1}{3^{2}}\left(2^{7 \times 3^{i}-1}-2^{4 \times 3^{i}-1}-2^{3^{i}}-2^{2 \times 3^{i+1}}+2^{3^{i+1}}+2\right) \\
& 3\left(K_{i}-1\right) K_{i} L_{i+1}=\frac{3}{3^{3}}\left(2^{2 \times 3^{i}}-2^{3^{i}}-2\right)\left(2^{2 \times 3^{i}}-2^{3^{i}}+1\right)\left(2^{3^{i+1}-1}-1\right) \\
& \quad=\frac{1}{3^{2}}\left(2^{4 \times 3^{i}}-2^{3^{i+1}+1}+2^{3^{i}}-2\right)\left(2^{3^{i+1}-1}-1\right) \\
& \quad=\frac{1}{3^{2}}\left(2^{7 \times 3^{i}-1}-2^{2 \times 3^{i+1}}+2^{4 \times 3^{i}-1}-2^{3^{i+1}}-2^{4 \times 3^{i}}+2^{3^{i+1}+1}-2^{3^{i}}+2\right)
\end{aligned}
$$

Thus we now have to prove: $-2^{4 \times 3^{i}-1}+2^{3^{i+1}}=2^{4 \times 3^{i}-1}-2^{3^{i+1}}-2^{4 \times 3^{i}}+2^{3^{i+1}+1}$, which is equivalent to: $2 \times 2^{3^{i+1}}-2^{3^{i+1}+1}=2 \times 2^{4 \times 3^{i}-1}-2^{4 \times 3^{i}}$, and which clearly simplifies in: $0=0$, proving (FLR.9).

Now, since for $i=1$ we have: $K_{1}=19=1+2 \times 3^{2} L_{1} K_{0}$, with $K_{0}=1$ and $L_{1}=1$, we suppose that (FLR.8) is true for n and we prove that it implies that (FLR.8) is true for $n+1$.
First, write (FLR.9) this way: $K_{i+1}=1+\left(3\left(K_{i}-1\right) K_{i} L_{i+1}\right) / L_{i}$ (I).
By the hypothesis, we have: $\left(K_{i}-1\right) / L_{i}=2 \times 3^{i+1} \prod_{j=0}^{i-1} K_{j}$ (II).
Replacing now $\left(K_{i}-1\right) / L_{i}$ from (II) in (I), we have: $K_{i+1}=1+2 \times$ $3^{i+2} K_{i} L_{i+1} \prod_{j=0}^{i-1} K_{j}=1+2 \times 3^{i+2} L_{i+1} \prod_{j=0}^{i} K_{j}$, which proves (FLR.8).
Using (II) in (FLR.7) with n replacing i, it easily comes that we have: $A_{n}=$ $1+2^{3^{n}-1}\left(K_{n}-1\right) / L_{n}$, proving (FLR.10) and providing the factorization of $2^{3^{n}}+1$.
Notice that $A_{n}=1+A 2^{3^{n}-1}$ with $A>2^{3^{n}-1}$, showing that usual primality proofs based on Lucas sequences do not apply there.

Proof of (FLR.11):

The proof of (FLS.7) by Saouter provides nearly all we need for proving (FLR.11). Here is my version:
By (FLS.5), we have: $2^{3^{n+1}} \equiv 1\left(\bmod A_{n}\right)$. If p is prime and $p \mid A_{n}$, then $2^{3^{n+1}} \equiv 1(\bmod p)$, and thus ρ, the order of $2(\bmod p)$, divides 3^{n+1}.
By the definition of A_{n}, we have: $2^{3^{n}}\left(2^{3^{n}}+1\right) \equiv 1\left(\bmod A_{n}\right)$. If ρ were smaller than 3^{n+1}, that would imply: $1 \times(1+1) \equiv 1(\bmod p)$, which is false. Thus $\rho=3^{n+1}$.
Since by Fermat little theorem we have: $2^{p-1} \equiv 1(\bmod p)$, then ρ also divides $p-1$. And thus: $p=1+2 k 3^{n+1}$ and $2^{(p-1) / 2}=2^{k 3^{n+1}}=\left(2^{3^{n+1}}\right)^{k} \equiv(1)^{k} \equiv 1$ $(\bmod p)$. This means that 2 is a quadratic residue $(\bmod p)$ and if follows:

$$
p \equiv \pm 1 \quad(\bmod 8)
$$

4 Conjectures

p prime, $p \mid K_{n} \Longrightarrow p=1+2 k 3^{n+1}$ and $p \equiv 1$ or $3(\bmod 8)$
8 is the first value for n for which $2^{3^{n}}+1$ does not appear in the Cunningham project. I've found the following factors of $2^{3^{8}}+1: 1+2.3^{8} .4,1+2.3^{8} .2205$, $1+2.3^{8} .40091760$. And a factor of $2^{3^{14}}+1: 1+2.3^{14} .380$.

5 Numerical Data

$$
\begin{aligned}
& A_{0}=3+2 \times\left(2^{0}+1\right] \\
& A_{1}=3+2 A_{0} \times 5 \\
& A_{2}=3+2 A_{0} A_{1} \times 257 \\
& A_{3}=3+2 A_{0} A_{1} A_{2} \times\left(2^{26}+1\right) \\
& A_{4}=3+2 A_{0} A_{1} A_{2} A_{3} \times 65537 \times \ldots \\
& A_{0}=7=\left(2^{3^{0}}+1\right) 2^{3^{0}}+1=1+2^{3^{0}} 3^{1} \\
& A_{1}=73=\left(2^{3^{1}}+1\right) 2^{3^{1}}+1=1+2^{3^{1}} 3^{2} K_{0} \\
& K_{0}=1 \\
& A_{2}=262657=\left(2^{3^{2}}+1\right) 2^{3^{2}}+1=1+2^{3^{2}} 3^{3} 19=1+2^{3^{2}} 3^{3} K_{0} K_{1} \\
& K_{1}=19=1+2.3^{2} K_{0} L_{1} \\
& L_{1}=1 \\
& A_{3}=\left(2^{3^{3}}+1\right) 2^{3^{3}}+1=1+2^{3^{3}} 3^{4} 19 * 87211=1+2^{3^{3}} 3^{4} K_{0} K_{1} K_{2} \\
& K_{2}=87211=1+2.27 .1 .19 .5 .17=1+2.3^{3} K_{0} K_{1} L_{2} \\
& L_{2}=5.17 \\
& A_{4}=\left(2^{3^{4}}+1\right) 2^{3^{4}}+1=1+2^{3^{4}} 3^{5} K_{0} K_{1} K_{2} K_{3} \\
& K_{3}=6004799458421419=1+2.3^{4} K_{0} K_{1} K_{2} L_{3} \\
& L_{3}=2731.8191 \\
& A_{5}=\left(2^{3^{5}}+1\right) 2^{3^{5}}+1=1+2^{3^{5}} 3^{6} K_{0} K_{1} K_{2} K_{3} K_{4} \\
& K_{4}=19 \ldots 51=1+2.3^{5} K_{0} K_{1} K_{2} K_{3} L_{4} \\
& L_{4}=5^{2} .11 .17 .31 .41 .257 .61681 .4278255361 \\
& 61681=1+2^{4} .3 .5 .257 \\
& 4278255361=1+2^{8} .3 .5 .17 .65537
\end{aligned}
$$

$6 \quad$ To Be Studied

$$
\begin{aligned}
&\left(2^{k}\right)^{3^{3^{n}-1}} \prod_{i=1}^{n} K_{i} \equiv 2^{4 k} \quad\left(\bmod A_{n}\right) \quad(\text { FLRC. } 2) \\
&\left(2^{k}\right)^{3^{3^{n}-3}} \prod_{i=1}^{n} K_{i} \equiv 2^{k} \quad\left(\bmod A_{n}\right) \quad(\text { FLRC. } 3) \\
&\left(2^{3^{n}}\right)^{\prod_{i=1}^{n} K_{i}} \equiv 2^{3^{n}} \quad\left(\bmod A_{n}\right) \quad(\text { FLRC. } 4)
\end{aligned}
$$

$$
\begin{aligned}
& 5^{2^{3}}=41^{2} \equiv 2\left(\bmod A_{1}\right) \\
& 5^{2^{2}} \equiv 41\left(\bmod A_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (-2)^{3^{2}} \equiv-1\left(\bmod A_{1}\right) \\
& 41=1+2^{3} .5 \\
& \left(2^{1} 2^{2^{8} \times 19} \equiv\left(2^{1}\right)^{4}\left(\bmod A_{2}\right)\right. \\
& \left(2^{2} 2^{2^{8} \times 19} \equiv\left(2^{2}\right)^{4}\left(\bmod A_{2}\right)\right. \\
& \left(2^{3}\right)^{2^{8} \times 19} \equiv\left(2^{3}\right)^{4}\left(\bmod A_{2}\right) \\
& \left(2^{4} 2^{8} \times 19 \equiv\left(2^{4}\right)^{4}\left(\bmod A_{2}\right)\right. \\
& \left(2^{3}\right)^{19} \equiv\left(2^{3}\right)\left(\bmod A_{2}\right) \\
& 2^{19} \equiv-\left(2^{10}+2^{1}\right)\left(\bmod A_{2}\right) \\
& 5^{2^{8} .19} \equiv-16\left(\bmod A_{2}\right) \\
& (-16)^{3^{3}} \equiv-1\left(\bmod A_{2}\right) \\
& (-16)^{7} \equiv-2\left(\bmod A_{2}\right) \\
& 5^{2^{9} \times 19 \times 17}=246273 \equiv 2\left(\bmod A_{2}\right) \\
& 246273=1+2^{9} .13 .37 \\
& 13 \times 37=481=1+2^{5} .3 .5 \\
& 8^{87211} \equiv 8\left(\bmod A_{3}\right) \\
& 64^{87211} \equiv 64\left(\bmod A_{3}\right) \\
& \left(2^{3^{2}}\right)^{87211} \equiv 2^{3^{2}}\left(\bmod A_{3}\right) \\
& 512^{19} \equiv 512\left(\bmod A_{3}\right) \\
& 4096^{87211} \equiv 4096\left(\bmod A_{3}\right) \\
& 512^{2^{26} \times 19 \times 87211} \equiv 2^{36}\left(\bmod A_{3}\right) \\
& \left(2^{1}\right)^{266} \times 19 \times 87211 \equiv\left(2^{1}\right)^{4}\left(\bmod A_{3}\right) \\
& \left(2^{2}\right)^{2^{26} \times 19 \times 87211} \equiv\left(2^{2}\right)^{4}\left(\bmod A_{3}\right) \\
& \left(2^{3} 2^{26} \times 19 \times 87211 \equiv\left(2^{3}\right)^{4}\left(\bmod A_{3}\right)\right. \\
& \left(2^{4} 2^{26} \times 19 \times 87211 \equiv\left(2^{4}\right)^{4}\left(\bmod A_{3}\right)\right. \\
& 2^{19 \times 87211} \equiv-\left(2^{46}+2^{19}\right)\left(\bmod A_{3}\right)
\end{aligned}
$$

