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This paper provides a proof of:

Theorem 1 (Lucas-Lehmer-Reix)
M, =29-1 (q > 3)is a prime if and only if it divides Sy—o , where Sy =5
and S; =252, —1 fori=1,2,3,...q—2.

The proof is based on the chapters 4 (The Lucas Functions) and 8.4 (The
Lehmer Functions) of the book "Edouard Lucas and Primality Testing” of
H. C. Williams, 1998. (The Lehmer’s theorems are also listed and detailed
in my paper ” A LLT-like test for proving the primality of Fermat numbers”
(2004).)

Chapter 1 explains how the (P, @) parameters have been found. Then Chap-
ter 2 and 3 provide the proof for: M, prime = M, | S;—2 and the converse,
proving theorem 1. Chapter 4 provides numerical examples. The appendix
in Chapter 5 provides first values of U,, and V,, .

1 Lucas Sequence with P = VR

Let Sop =5 and S; =252 | — 1. S =49, S5 = 4801, ...
Son_9 =0 (mod M) for ¢ =3,5,7,13,17, ...

It has been checked that: { Son_»£0 (mod M,) for g = 11,23,29..

Here after, we search a Lucas Sequence (U, ) m>0 and its companion (V;;,) m>0
with (P, Q) that fit with the values of the S; sequence.

We define the Lucas Sequence V;;,, such that:

Vg1 = 2 X Sk, (1)
Vo = 2x8; = 10
Thus we have: Vi = 2x85 = 98
Vs = 2x85y = 9602

V;L:V?—ZQQ

If (4.2.7 74 ( Vo, = V2 —2Q" lies, we have:
(4.2.7) page 74 ( V2 » —2Q" ) applies, we have {‘/8:‘/42_2@4

> _ 2 _
and thus: Q = €/V22V4 = €/V42V8 =+1.

With (4.1.3) page 70 ( Vyy1 = PV, — QVj_1 ), and with:
Vo =2
V=P
Vo = PV — QVp = P2 —2Q



we have: P:\/V2+2Q:\/ﬁ or V8.
In the following we consider: (P, Q) = (v12,1) .

As explained by Williams page 196, ”all of the identity relations [Lucas
functions] given in (4.2) continue to hold, as these are true quite without
regard as to whether P, () are integers”.

So, like Lehmer, we define P = v/R such that R and Q are coprime integers
and we define (Property (8.4.1) page 196):

o V, when 2 | n = Un/\/ﬁ when 2 | n
N Vo/VR  when 2{n Un when 2 tn

n =

in such a way that V,, and U,, are always integers.

Table 1 gives values of U; , V; , U; (mod M,) , V;(mod M,) , with (P,Q) =
(V12,1) ,forq=15.

2 M, prime = M, | VMq_l and M, | S,—2

Let N = M, =27 — 1 with ¢ > 3 be an odd prime.
Let: P=vVR,R=12=3x%x22,Q=2,and D=P%2 —4Q =8 =23 .

The values (?/N) = 1 and (3/N) = —1 are provided in Wiiliams’ book, page
198, in the Proof of Theorem 8.4.9.

e=(Ov) = ()’ = +1
So we have: o= (R/N) = (2/N)2(3/N) - 1
7= (W) = () = +1

Since 0 = —7 and oe = —1, M, { DQR with ¢ > 3, then by Theorem 2
(8.4.1) we have:

My prime = My |V a1 = Vg1
2
By (1), with k = ¢ — 2, we have: M, | Sq—2 .

3 M,|S,2 = M,is aprime
Let N = M, with ¢ > 3 . By (1) we have: N [ Sy 2 = N | Vg1 .
And thus, by (4.2.6) page 74 ( Uz, = U,V, ) , we have: N | Ugq .

By (4.3.6) page 85: ( (Vi,,Up) | 2Q™ for any n ), and since @ = 1 , then:
(Vagg—1,Uqq—1) = 2 and thus: Nt Uyg—1 since N odd.



With w = w(N) , by Theorem 3 (8.4.3), since N | Uyg and N { Upq—1, we
have : w | 29 and w {2971 .

This implies: w =29= N 4+ 1. Then N + 1 is the rank of apparition of N,
and thus by Theorem 5 (8.4.6) N is a prime.

O
4  Numerical Examples
mod M;) So =5+ S; =0
mod M) So =55 1843 27 % S5 =0
55 9&102H106H119._>S5_0

5 Appendix:

i Ui q | Ui [M,] Vi q| Vi [My] Sk | Sk [Mq]
0 0 xP |5 0 2 ) 2
1 1 ) 1 1 xP |5 1
2 1 xP |5 1 10 ) 10 ) )
3 11 ) 11 9 xP |5 9
4 10 xP |5 10 98 ) ) 49 18
5| 109 ) 16 89 XxP |5 27
6 99 xP |5 6 970 ) 9
711079 ) 25 881 xP |5 13
81 980 xP |5 19 9602 ) 23 4801 27
16 xP |5 92198402 5) 0 46099201 0
Table 1: P=+12 , Q=1
The values of U’,, and V/,, (,>1) with (P, Q) = (v/8,—1) can be built by:
{ ﬁZn = ﬁQn { W2n = VZn
ﬁ2n+1 = V2n+1 W2n—|—1 = U2n+1

Values of U; and V; in previous tables can be computed easily by the following
PARI/gp programs:

Uzj+1: U0=1;Ul=11; for(i=1,n, U0=10*U1-*U0; Ul=10*U0-U1; print(4*i+1,”
7, U0); print(4*i+3,” 7,U1))

Vo, + U0=2;U1=10; for(i=1,n, U0=10*U1-*U0; Ul=10*U0-U1; print(4*i,”

7 U0); print(4*i+2,” 7,U1))




