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This paper provides a proof of:

Theorem 1 (Lucas-Lehmer-Reix)
Mq = 2q − 1 (q > 3) is a prime if and only if it divides Sq−2 , where S0 = 5
and Si = 2S 2

i−1 − 1 for i = 1, 2, 3, ... q − 2 .

The proof is based on the chapters 4 (The Lucas Functions) and 8.4 (The
Lehmer Functions) of the book ”Édouard Lucas and Primality Testing” of
H. C. Williams, 1998. (The Lehmer’s theorems are also listed and detailed
in my paper ”A LLT-like test for proving the primality of Fermat numbers”
(2004).)
Chapter 1 explains how the (P, Q) parameters have been found. Then Chap-
ter 2 and 3 provide the proof for: Mq prime =⇒ Mq | Sq−2 and the converse,
proving theorem 1. Chapter 4 provides numerical examples. The appendix
in Chapter 5 provides first values of Un and Vn .

1 Lucas Sequence with P =

√
R

Let S0 = 5 and Si = 2S2
i−1 − 1 . S1 = 49, S2 = 4801, ...

It has been checked that:

{

S2n−2 ≡ 0 (mod Mq) for q = 3, 5, 7, 13, 17, ...
S2n−2 6= 0 (mod Mq) for q = 11, 23, 29...

Here after, we search a Lucas Sequence (Um)m>0 and its companion (Vm)m>0

with (P, Q) that fit with the values of the Si sequence.

We define the Lucas Sequence Vm such that:
V

2k+1 = 2 × Sk (1)

Thus we have:







V2 = 2 × S0 = 10
V4 = 2 × S1 = 98
V8 = 2 × S2 = 9602

If (4.2.7) page 74 ( V2n = V 2
n − 2Qn ) applies, we have:

{

V4 = V 2
2 − 2Q2

V8 = V 2
4 − 2Q4

and thus: Q =
2

√

V 2

2
−V4

2
=

4

√

V 2

4
−V8

2
= ±1 .

With (4.1.3) page 70 ( Vn+1 = PVn − QVn−1 ), and with:






V0 = 2
V1 = P
V2 = PV1 − QV0 = P 2 − 2Q
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we have: P =
√

V2 + 2Q =
√

12 or
√

8 .

In the following we consider: (P, Q) = (
√

12, 1) .

As explained by Williams page 196, ”all of the identity relations [Lucas
functions] given in (4.2) continue to hold, as these are true quite without
regard as to whether P, Q are integers”.

So, like Lehmer, we define P =
√

R such that R and Q are coprime integers
and we define (Property (8.4.1) page 196):

V n =

{

Vn when 2 | n

Vn/
√

R when 2 ∤ n
Un =

{

Un/
√

R when 2 | n

Un when 2 ∤ n

in such a way that V n and Un are always integers.

Table 1 gives values of Ui , Vi , U i (mod Mq) , V i (mod Mq) , with (P, Q) =
(
√

12, 1) , for q = 5 .

2 Mq prime =⇒ Mq | V Mq−1
2

and Mq | Sq−2

Let N = Mq = 2q − 1 with q ≥ 3 be an odd prime.

Let: P =
√

R , R = 12 = 3 × 22 , Q = 2 , and D = P 2 − 4Q = 8 = 23 .

The values
(

2/N
)

= 1 and
(

3/N
)

= −1 are provided in Wiiliams’ book, page
198, in the Proof of Theorem 8.4.9.

So we have:















ε =
(

D/N
)

=
(

2/N
)3

= +1

σ =
(

R/N
)

=
(

2/N
)2(3/N

)

= −1

τ =
(

Q/N
)

=
(

1/N
)

= +1

Since σ = −τ and σǫ = −1, Mq ∤ DQR with q ≥ 3, then by Theorem 2
(8.4.1) we have:

Mq prime =⇒ Mq | V Mq+1

2

= V
2q−1

By (1), with k = q − 2, we have: Mq | Sq−2 .

�

3 Mq | Sq−2 =⇒ Mq is a prime

Let N = Mq with q ≥ 3 . By (1) we have: N | Sq−2 =⇒ N | V
2q−1 .

And thus, by (4.2.6) page 74 ( U2a = UaVa ) , we have: N | U2q .

By (4.3.6) page 85: ( (Vn, Un) | 2Qn for any n ), and since Q = 1 , then:
(V

2q−1 , U2q−1) = 2 and thus: N ∤ U
2q−1 since N odd.
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With ω = ω(N) , by Theorem 3 (8.4.3), since N | U2q and N ∤ U
2q−1 , we

have : ω | 2q and ω ∤ 2q−1 .

This implies: ω = 2q = N + 1 . Then N + 1 is the rank of apparition of N,
and thus by Theorem 5 (8.4.6) N is a prime.

�

4 Numerical Examples

(mod M3) S0 = 5
17→ S1 ≡ 0

(mod M5) S0 = 5
17→ 18

27→ 27
37→ S3 ≡ 0

(mod M7) S0 = 5
17→ 49

27→ 102
37→ 106

47→ 119
57→ S5 ≡ 0

(mod M11) S0 = 5
17→ 49

27→ 707
37→ 761

47→ 1686
57→ 672

67→ 440
77→ 316

87→
1152

97→ S9 ≡ 1295

5 Appendix: Table of Ui, Vi and Sk

i Ui q U i [Mq] Vi q V i [Mq] k Sk Sk [Mq]

0 0 ×P 5 0 2 5 2
1 1 5 1 1 ×P 5 1
2 1 ×P 5 1 10 5 10 0 5 5
3 11 5 11 9 ×P 5 9
4 10 ×P 5 10 98 5 5 1 49 18
5 109 5 16 89 ×P 5 27
6 99 ×P 5 6 970 5 9
7 1079 5 25 881 ×P 5 13
8 980 ×P 5 19 9602 5 23 2 4801 27

16 ... ×P 5 ... 92198402 5 0 2 46099201 0

Table 1: P =
√

12 , Q = 1

The values of U ′
n and V ′

n (n≥1) with (P, Q) = (
√

8,−1) can be built by:

{

U ′
2n = U2n

U ′
2n+1 = V 2n+1

{

V ′
2n = V 2n

V ′
2n+1 = U2n+1

Values of Ui and Vi in previous tables can be computed easily by the following
PARI/gp programs:
U2j+1 : U0=1;U1=11; for(i=1,n, U0=10*U1-*U0; U1=10*U0-U1; print(4*i+1,”
”,U0); print(4*i+3,” ”,U1))
V2j : U0=2;U1=10; for(i=1,n, U0=10*U1-*U0; U1=10*U0-U1; print(4*i,”
”,U0); print(4*i+2,” ”,U1))
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