A LLT-like test for proving the primality of Mersenne numbers.

Tony Reix (Tony.Reix@laposte.net)
2005, 14th of October

This paper provides a proof of:

Theorem 1 (Lucas-Lehmer-Reix)

$M_{q}=2^{q}-1(q \geqslant 3)$ is a prime if and only if it divides S_{q-2}, where $S_{0}=5$ and $S_{i}=2 S_{i-1}^{2}-1$ for $i=1,2,3, \ldots q-2$.
The proof is based on the chapters 4 (The Lucas Functions) and 8.4 (The Lehmer Functions) of the book "Édouard Lucas and Primality Testing" of H. C. Williams, 1998. (The Lehmer's theorems are also listed and detailed in my paper "A LLT-like test for proving the primality of Fermat numbers" (2004).)

Chapter 1 explains how the (P, Q) parameters have been found. Then Chapter 2 and 3 provide the proof for: M_{q} prime $\Longrightarrow M_{q} \mid S_{q-2}$ and the converse, proving theorem 1. Chapter 4 provides numerical examples. The appendix in Chapter 5 provides first values of U_{n} and V_{n}.

1 Lucas Sequence with $P=\sqrt{R}$

Let $S_{0}=5$ and $S_{i}=2 S_{i-1}^{2}-1 . S_{1}=49, S_{2}=4801, \ldots$
It has been checked that: $\quad\left\{\begin{array}{l}S_{2^{n}-2} \equiv 0\left(\bmod M_{q}\right) \text { for } q=3,5,7,13,17, \ldots \\ S_{2^{n}-2} \neq 0\left(\bmod M_{q}\right) \text { for } q=11,23,29 \ldots\end{array}\right.$
Here after, we search a Lucas Sequence $\left(U_{m}\right)_{m \geqslant 0}$ and its companion $\left(V_{m}\right)_{m \geqslant 0}$ with (P, Q) that fit with the values of the S_{i} sequence.

We define the Lucas Sequence V_{m} such that:

$$
\begin{equation*}
V_{2^{k+1}}=2 \times S_{k} \tag{1}
\end{equation*}
$$

$$
\text { Thus we have: }\left\{\begin{array}{l}
V_{2}=2 \times S_{0}= \\
V_{4}=2 \times S_{1}=10 \\
V_{8}=2 \times S_{2}=9602
\end{array}\right.
$$

If (4.2.7) page $74\left(V_{2 n}=V_{n}^{2}-2 Q^{n}\right)$ applies, we have: $\left\{\begin{array}{l}V_{4}=V_{2}^{2}-2 Q^{2} \\ V_{8}=V_{4}^{2}-2 Q^{4}\end{array}\right.$ and thus: $Q=\sqrt[2]{\frac{V_{2}^{2}-V_{4}}{2}}=\sqrt[4]{\frac{V_{4}^{2}-V_{8}}{2}}= \pm 1$.

With (4.1.3) page $70\left(V_{n+1}=P V_{n}-Q V_{n-1}\right)$, and with:

$$
\left\{\begin{array}{l}
V_{0}=2 \\
V_{1}=P \\
V_{2}=P V_{1}-Q V_{0}=P^{2}-2 Q
\end{array}\right.
$$

we have: $P=\sqrt{V_{2}+2 Q}=\sqrt{12}$ or $\sqrt{8}$.
In the following we consider: $(P, Q)=(\sqrt{12}, 1)$.
As explained by Williams page 196, "all of the identity relations [Lucas functions] given in (4.2) continue to hold, as these are true quite without regard as to whether P, Q are integers".
So, like Lehmer, we define $P=\sqrt{R}$ such that R and Q are coprime integers and we define (Property (8.4.1) page 196):

$$
\bar{V}_{n}=\left\{\begin{array}{ll}
V_{n} & \text { when } 2 \mid n \\
V_{n} / \sqrt{R} & \text { when } 2 \nmid n
\end{array} \quad \bar{U}_{n}= \begin{cases}U_{n} / \sqrt{R} & \text { when } 2 \mid n \\
U_{n} & \text { when } 2 \nmid n\end{cases}\right.
$$

in such a way that \bar{V}_{n} and \bar{U}_{n} are always integers.
Table 1 gives values of $U_{i}, V_{i}, \bar{U}_{i}\left(\bmod M_{q}\right), \bar{V}_{i}\left(\bmod M_{q}\right)$, with $(P, Q)=$ $(\sqrt{12}, 1)$, for $q=5$.

$2 \quad M_{q}$ prime $\Longrightarrow M_{q} \left\lvert\, \bar{V}_{\frac{M_{q}-1}{2}}\right.$ and $M_{q} \mid S_{q-2}$

Let $N=M_{q}=2^{q}-1$ with $q \geq 3$ be an odd prime.
Let: $P=\sqrt{R}, R=12=3 \times 2^{2}, Q=2$, and $D=P^{2}-4 Q=8=2^{3}$.
The values $(2 / \mathrm{N})=1$ and $(3 / \mathrm{N})=-1$ are provided in Wiiliams' book, page 198, in the Proof of Theorem 8.4.9.

$$
\text { So we have: } \begin{cases}\varepsilon=(\mathrm{D} / \mathrm{N})=(2 / \mathrm{N})^{3}= & +1 \\ \sigma=(\mathrm{R} / \mathrm{N})=(2 / \mathrm{N})^{2}(3 / \mathrm{N})= & -1 \\ \tau=(\mathrm{Q} / \mathrm{N})=(1 / \mathrm{N})= & +1\end{cases}
$$

Since $\sigma=-\tau$ and $\sigma \epsilon=-1, M_{q} \nmid D Q R$ with $q \geq 3$, then by Theorem 2 (8.4.1) we have:

$$
M_{q} \text { prime } \Longrightarrow M_{q} \left\lvert\, \bar{V}_{\frac{M_{q}+1}{2}}=V_{2^{q-1}}\right.
$$

By (1), with $k=q-2$, we have: $M_{q} \mid S_{q-2}$.

$3 \quad M_{q} \mid S_{q-2} \Longrightarrow M_{q}$ is a prime

Let $N=M_{q}$ with $q \geq 3$. By (1) we have: $N\left|S_{q-2} \Longrightarrow N\right| V_{2 q-1}$.
And thus, by (4.2.6) page $74\left(U_{2 a}=U_{a} V_{a}\right)$, we have: $N \mid \bar{U}_{2} q$.
By (4.3.6) page 85: $\quad\left(\left(V_{n}, U_{n}\right) \mid 2 Q^{n}\right.$ for any $\left.n\right)$, and since $Q=1$, then: $\left(V_{2^{q-1}}, \bar{U}_{2^{q-1}}\right)=2$ and thus: $N \nmid \bar{U}_{2^{q-1}}$ since N odd.

With $\omega=\omega(N)$, by Theorem 3 (8.4.3), since $N \mid \bar{U}_{2^{q}}$ and $N \nmid \bar{U}_{2^{q-1}}$, we have : $\omega \mid 2^{q}$ and $\omega \nmid 2^{q-1}$.

This implies: $\omega=2^{q}=N+1$. Then $N+1$ is the rank of apparition of N , and thus by Theorem 5 (8.4.6) N is a prime.

4 Numerical Examples

$\left(\bmod M_{3}\right) S_{0}=5 \stackrel{1}{\mapsto} S_{1} \equiv 0$
$\left(\bmod M_{5}\right) S_{0}=5 \stackrel{1}{\mapsto} 18 \stackrel{2}{\mapsto} 27 \stackrel{3}{\mapsto} S_{3} \equiv 0$
$\left(\bmod M_{7}\right) S_{0}=5 \stackrel{1}{\mapsto} 49 \stackrel{2}{\mapsto} 102 \stackrel{3}{\mapsto} 106 \stackrel{4}{\mapsto} 119 \stackrel{5}{\mapsto} S_{5} \equiv 0$
$\left(\bmod M_{11}\right) S_{0}=5 \stackrel{1}{\mapsto} 49 \stackrel{2}{\mapsto} 707 \stackrel{3}{\mapsto} 761 \stackrel{4}{\mapsto} 1686 \stackrel{5}{\mapsto} 672 \stackrel{6}{\mapsto} 440 \stackrel{7}{\mapsto} 316 \stackrel{8}{\mapsto}$ $1152 \stackrel{9}{\mapsto} S_{9} \equiv 1295$

5 Appendix: Table of U_{i}, V_{i} and S_{k}

i	U_{i}		q	$\bar{U}_{i}\left[M_{q}\right]$	V_{i}	q	$\bar{V}_{i}\left[M_{q}\right]$	k	S_{k}	$S_{k}\left[M_{q}\right]$	
0	0	$\times P$	5	0	2		5	2			
1	1		5	1	1	$\times P$	5	1			
2	1	$\times P$	5	1	10		5	10	0	5	5
3	11		5	11	9	$\times P$	5	9			
4	10	$\times P$	5	10	98		5	5	1	49	18
5	109		5	16	89	$\times P$	5	27			
6	99	$\times P$	5	6	970		5	9			
7	1079		5	25	881	$\times P$	5	13			
8	980	$\times P$	5	19	9602		5	23	2	4801	27
16	\ldots	$\times P$	5	\ldots	92198402		5	0	2	46099201	0

Table 1: $P=\sqrt{12}, \quad Q=1$
The values of $\overline{U^{\prime}}{ }_{n}$ and $\overline{V^{\prime}}{ }_{n}\left({ }_{n \geq 1}\right)$ with $(P, Q)=(\sqrt{8},-1)$ can be built by:

$$
\left\{\begin{array} { l l }
{ \overline { U } ^ { \prime } { } _ { 2 n } } & { = \overline { U } _ { 2 n } } \\
{ { \overline { U ^ { \prime } } } _ { 2 n + 1 } } & { = \overline { V } _ { 2 n + 1 } }
\end{array} \quad \left\{\begin{array}{ll}
{\overline{V^{\prime}}}_{2 n} & =\bar{V}_{2 n} \\
{\overline{V^{\prime}}}_{2 n+1} & =\bar{U}_{2 n+1}
\end{array}\right.\right.
$$

Values of U_{i} and V_{i} in previous tables can be computed easily by the following PARI/gp programs:
$U_{2 j+1}: \mathrm{U} 0=1 ; \mathrm{U} 1=11 ;$ for(i=1,n, U0=10*U1-*U0; U1=10*U0-U1; print($4{ }^{*} \mathrm{i}+1, "$
",U0); print(4*i+3," ",U1))
$V_{2 j}: \mathrm{U} 0=2 ; \mathrm{U} 1=10 ;$ for $(\mathrm{i}=1, \mathrm{n}, \mathrm{U} 0=10 * \mathrm{U} 1-* \mathrm{U} 0 ; \mathrm{U} 1=10 * \mathrm{U} 0-\mathrm{U} 1 ; \operatorname{print}(4 * \mathrm{i}, "$
",U0); print(4*i+2," ",U1))

