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◦ This paper presents a conjecture that, if proven, would reduce by 25 %
the time needed for proving the primality of a Fermat number.

◦ The smallest Fermat number whose primality status is unknown is: F33 ,
which is nearly 6 billions characters. A very large number. Proving it is a
prime or a composite number would take years.
Proving the primality or the compositeness of Fermat numbers is done by
means of a test provided by Th. Pépin in 1877. The test is simple and fast.

◦ While studying some Lucas sequence for Fermat numbers by means of the
function: x 7→ 2x2 − 1, I discovered a ”fixed point”: the number 3 always
appears at the same relative rank (2n−2) in the sequence. Considering a
new Lucas sequence starting from the equivalent value (6) for x 7→ x2 − 2, I
found that this led to a well-known Lucas Sequence: the Pell numbers, built
with (P, Q) = (2,−1). After some study, it seemed possible that this Lucas
sequence could provide: if Fn divides Vkn

, where kn = 23∗2n−2−1, then Fn

is prime . Proving the converse also seems possible due to numerical facts
showing remarkable periods for n = 2, 3, 4 and not for n = 5, but the proof
seems difficult.

◦ While I was looking for information about primality tests based on Pell
numbers, I found in Williams’ book that this Lucas sequence had already
been studied and used by Édouard Lucas himself for providing a weaker
primality test for Fermat numbers. He used a first version of this test in his
book ”Récréations Mathématiques”.
Again in William’s book appears a theorem from Emma Lehmer showing
that Fn is prime if it divides U(Fn−1)/16(2,−1), for n ≥ 4.

◦ Either Édouard Lucas discovered the properties I will describe hereafter in
my paper but he failed to prove them and chose to provide a weaker proof, or
he discovered only a sub-part. As H.C. Williams says in his book, Édouard
Lucas was studying many subjects at the same time, and he may not have
spent enough time to this. Also, it seems that Lucas often considered the
”necessity” part of a theorem not so important ...
[

In the following, R(...) refers to a theorem or property appearing in Paulo
Ribenboim’s book: ”The Little Book of Bigger Primes” ; and W(...) refers
to H.C. Williams’ book: ”Édouard Lucas and Primality Testing”. L(...)
refers to Lucas paper in the American Journal of Mathematics 1878.

]
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Conjecture 1 (Lucas-Reix) Let n ≥ 2, Fn = 22n

+1, kn = 3× 2n−2 − 1 .
Fn is a prime ⇐⇒ Fn | Skn , where: S1 = 6 , Si+1 = S 2

i − 2 .

Compared to the Pépin test which requires 2n − 1 operations, testing only
up to 3 × 2n−2 − 1 would provide a gain of 25 % in speed.

1 Fn prime =⇒ Fn | U(Fn−1)/2(2,−1)

Let: N = Fn a prime.
We use: x 7→ x2 − 2 for building a sequence starting from 6.
We have: S1 = V2 = 6, S2 = V4 = 34, S3 = V8 = 1154, ... Si = V2i

By W(4.2.7) page 74 ( V2n = V 2
n − 2Qn ) , we have:

{

V4 = V 2
2 − 2Q2

V8 = V 2
4 − 2Q4

and thus: Q =
2

√

V 2
2 −V4

2 =
4

√

V 2
4 −V8

2 = ±1 .

By W(4.1.3) page 70 ( Vn+1 = PVn − QVn−1 ), and with:







V0 = 2
V1 = P
V2 = PV1 − QV0 = P 2 − 2Q

we have: P =
√

V2 + 2Q = 2
√

2 or 2 , and D = P 2 − 4Q = 4 or 8 .



























(P, Q) = (2
√

2, +1) , D = 4

ǫ =
(

D/N
)

=
(

4/N
)

= 1

σ =
(

R/N
)

=
(

8/N
)

= 1

τ =
(

Q/N
)

=
(

1/N
)

= 1



























(P, Q) = (2,−1) , D = 8

ǫ =
(

D/N
)

=
(

8/N
)

= 1

σ =
(

R/N
)

=
(

4/N
)

= 1

τ =
(

Q/N
)

=
(

-1/N
)

= 1

For both Q = 1 and Q = −1 , by theorem W(8.4.1) page 197 , since σ = τ ,
and since N is a prime, thus we have: N | U (N−σǫ)/2 = U (N−1)/2 = U22n

−1

, and by W(4.2.6) page 74 : N | U22n .
Since U2n =

∏n−1
i=0 V2i , thus it must exist some x ≤ 2n−1 such that Fn | V2x .

Hereafter, we consider (P, Q) = (2,−1) (And thus: Un = Un and V n = Vn).
This Lucas Sequence builds the Pell numbers (Un) and the companion Pell
numbers (Vn), which first values are provided page 61 of Ribenboim’s book.

We have:

{

Un = 2Un−1 + Un−2 U0 = 0 U1 = 1

Vn = 2Vn−1 + Vn−2 V0 = 2 V1 = 2

2



2 Bits of history

2.1 A first theorem of Lucas about Fn numbers

In his book, H.C Williams provides a theorem from Lucas:

Theorem 1 (Lucas W(5.2.1) page 99) Let Fn = 2r + 1 (r = 2n) and
T1 = 3. If we define the sequence {Ti} by Ti+1 = 2T 2

i − 1 , then Fn is a
prime if the first term of this sequence which is divisible by Fn is Tr−1 ...
(then info about compositeness)

I think there could be some mistakes here.

◦ Starting from: T1 = 3, and with: V2i = 2Ti, then we have: T1 = 3, T2 =
17, T3 = 577, ... T5 ≡ 0(mod 257) . And thus Fn seems to be prime if it
divides T3×2n−2−1.

[

This leads to (P, Q) = (
√

8, 1) or (P, Q) = (
√

4,−1),
with ǫ = 1, σ = 1, τ = 1 in both cases. Since σ = τ , then by Theorem
W(8.4.1) page 197 we have: Fn prime =⇒ Fn | U (Fn−στ)/2=22n

−1 .
]

◦ Now, if we use: T1 = 4 and again: V2i = 2Ti , then we have: T1 =
4, T2 = 31, T3 = 1921 = 17 ∗ 113, ... T7 ≡ 0(mod 257) . And thus Fn

seems to be a prime if it divides Tr−1.
[

This leads to (P, Q) = (
√

10, 1)

or (P, Q) = (
√

6,−1), with ǫ = −1, σ = −1, τ = 1 in both cases. Since
σ = −τ , then by Theorem W(8.4.1) page 197 we have: Fn prime =⇒ Fn |
V (Fn−στ)/2=22n

−1 = 2T2n−1 = 2Tr−1.
]

So it seems the theorem should use: T1 = 4 .

2.2 A very interesting theorem of Lucas

Next page, H.C. Williams says that Lucas used the following theorem for
proving that F6 is composite (probably the first time a number has been
proven composite without any knowledge of his factors):

Theorem 2 (Lucas W(5.2.2) page 100) Let Fn = 2r + 1 (r = 2n) and
S1 = 6 = V2(2,−1). If we define the sequence {Si} by Si+1 = S 2

i − 2 , then
Fn is a prime when Fn | Sk for some k such that r/2 ≤ k ≤ r− 1 . Also, Fn

is composite if Fn ∤ Sk for all k ≤ r − 1 . Finally, if Fn | Sk with k ≤ r/2 ,
then any prime divisor of Fn must have the form 2k+1q + 1 .

This test is sufficient for proving the primality of a Fermat number, but it
is not necessary.
H.C. Williams does not provide the proof. Rather, he says that ”by using
the same reasoning as that employed in the proof of Theorem (5.1.2) the
result follows easily”. Since this proof deals with Mersenne numbers and is
based on the facts that Mn | UMα+1 and Mn ∤ U(Mα+1)/2 in order to say
that the rank of apparition ω (the least value of m such that m | Un) of a
prime divisor of Mn is 2α, probably based on theorem W(4.3.13) page 90,
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and since we have seen previously that Fn | U22n
−1 and Fn | U22n , there is

something I don’t understand.

The original text from Lucas is really not clear, even for a French reader.
Lucas says that this theorem is a direct consequence of his ”fundamental
theorem” and of the duplication formulae, with no complementary explana-
tion. I propose here another translation:

Theorem 3 (Lucas L(XXVIII) page 313) Let Fn = 22n

+1 ; we create
the sequence of the 2n − 1 numbers: 6, 34, 1154, 13 31714, 17 73462 17794, ...
, so that each of them is equal to the square of the previous one minus 2.
The number Fn is a prime when the first element of the sequence which is
divisible by Fn appears between rank 2n−1 and rank 2n−1 ; it is a composite
number if no element of the sequence is divisible by Fn. Finally, if α < 2n−1

is the rank of the first element of the sequence which is divisible by Fn, the
prime divisors of Fn have the form: 22n+1

q + 1 .

Then Lucas says that Father Pépin’s method is appropriate for proving
that a Fermat number is prime. But, since (according to Father Mersenne)
Fermat numbers Fn with n > 4 seem to be all composite, instead of knowing
if the Fermat number is prime or not when the last operation is done by
means of Pépin’s test, it would be more efficient to use one of the φ(2n−1)
numbers that belong to exponent 2n−1 (not clear for me ...) .
(It is clear that a clear proof for Lucas’ theorem would be really useful.)
I also suspect that errors may have been added to the original manuscript
and that Lucas did not fixed them all before it was published.

2.3 F6 in ”Récréations Mathématiques”

In his book: ”Récréations Mathématiques”, published in 1891, page 235,
Édouard Lucas says that, starting with S0 = 6 and using: Si+1 = S 2

i − 2,
Fn is prime if Fn | S2n−1. He also says that he used this for proving that
F6 = 264 + 1 is composite. So 2n − 1 = 63 operations were required.

2.4 A hint from Édouard Lucas

In his book, page 108, H.C. Williams’ provides comments from Édouard
Lucas about his method. The most interesting information is that Lucas
explains that his procedure is able to prove the primality of F2, F3, F4 ”by
executing respectively 3, 6, or 12 operations instead of the maximum number
of 4, 8 and 16 operations which would be required by the other method”.

These numbers of operations: 3, 6, and 12 are equal to the value
of kn for n = 2, 3, 4 , plus 1 :

k2 = 3 × 20 − 1 = 2 , k3 = 3 × 21 − 1 = 5 , k4 = 3 × 22 − 1 = 11.
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2.5 A Theorem from Emma Lehmer

Page 108 and 109 of his book, Williams provides a theorem of Emma Lehmer
that can be used for proving the primality of Fermat numbers. It requires
4 steps less than Pépin’s test when n ≥ 4. Maybe it is a first step in the
direction of a proof of our conjecture, since F4−1

16 = 4096 = 2k4 .

Theorem 4 (E. Lehmer W(5.4.1) page 108) If p is a prime such that
p ≡ 1 (mod 32) and p = a2 + 64b2 = c2 + 128d2 (a, b, c, d ∈ Z) , then
U(p−1)/16(2,−1) ≡ 0 (mod p) if and only if b ≡ d (mod 2) .

Since Fn = (22n−1
)2 + 1 = (22n−1 − 1)2 + 2(22n−2

)2, thus, if n ≥ 4 and Fn is
a prime, we must have: U(Fn−1)/16(2,−1) ≡ 0(mod Fn) . It follows that if
Fn is a prime, then Fn | St, where t ≤ r − 5 (n ≥ 4) .

3 Computed properties of Pell numbers (mod Fn)

3.1 Pell numbers (mod F2)

i Un Un[F2] Vn Vn[F2] i Un Un[F2] Vn Vn[F2]

0 0 0 2 2 8 408 0 1154 15
1 1 1 2 2 9 985 16 2786 15
2 2 2 6 6 10 2378 15 6726 11
3 5 5 14 14 11 5741 12 16238 3
4 12 12 34 0 12 13860 5 39202 0
5 29 12 82 14 13 33461 5 94642 3
6 70 2 198 11 14 80782 15 228486 6
7 169 16 478 2 15 195025 1 551614 15

16 470832 0 1331714 2
17 1136689 1 3215042 2
...

Table 1: F2

It appears clearly that there is a period of 16 = F2 − 1 amongst the values
of Ui and Vi modulo F2. As seen later, the period Fn − 1 amongst the Ui

and Vi sequences can be easily proven for all primes, not only for Fermat
numbers. Also, we have the following symmetries:

U8+i ≡ −Ui , V8+i ≡ −Vi , U8+iV8+i ≡ UiVi for i = 0...7.

U4j+i ≡ (−1)i+j−1U4j−i , V4j+i ≡ (−1)i+jV4j−i for i, j = 1...4.

Examples:
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U9 ≡ −U1, V15 ≡ −V7 , U1V2 ≡ U10V10 ≡ 12 .
U5 ≡ −U3, U6 ≡ U2, V5 ≡ V3, V6 ≡ −V2 .

Also notice: U2 ≡ 21 , V2 ≡ 23 − 21 , U4 ≡ 23 + 22 (mod F2).

3.2 Pell numbers (mod F3)

i Un[F3] Vn[F3] i Un[F3] Vn[F3]

0 0 2 64 0 255
1 1 2 65 256 255
2 2 6 66 255 251
3 5 14 67 252 243
4 12 34 68 245 223

...
8 151 126 72 106 131

...
16 8 197 80 249 60
...
24 86 24 88 171 233
...
31 223 136 95 34 121
32 34 0 96 223 0
33 34 136 97 223 121
...
40 86 233 104 171 24
...
48 8 60 112 249 197
...
56 151 131 120 106 126
...
60 12 223 124 245 34
61 252 14 125 5 243
62 2 251 126 255 6
63 256 2 127 1 255

128 0 2
129 1 2

Table 2: F3

Now, the period is: 128 = (F3−1)/2 . No general property of Lucas sequence
exists for proving this period. A specific property must be built for this case.
We find for F3 the same kind of symmetries we had for F2 :
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U64+i ≡ −Ui , V64+i ≡ −Vi , U64+iV64+i ≡ UiVi for i = 0...63.

U32j+i ≡ (−1)i+j−1U32j−i , V32j+i ≡ (−1)i+jV32j−i for i, j = 1...32.

Examples:
U65 ≡ −U1, V120 ≡ −V56, U60V60 ≡ U124V124 ≡ 106 .
U33 ≡ −U31, U48 ≡ U16, V61 ≡ V3, V48 ≡ −V16 .

Also notice: U16 ≡ 23 , V16 ≡ −(26−22) , V31 ≡ 23F2 , U32 ≡ 25+21 ≡ 21F2.

3.3 Pell numbers (mod F4)

i Un[F4] Vn[F4] i Un[F4] Vn[F4]

0 0 2 4096 0 65535
1 1 2 4097 65536 65535
2 2 6 4098 65535 65531
3 5 14 4099 65532 65523
4 12 34 4100 65525 65503

...
1024 65409 4080 5120 128 61457

...
2046 6168 49089 6142 59369 16448
2047 63481 8224 6143 2056 57313
2048 2056 0 6144 63481 0
2049 2056 8224 6145 63481 57313
2050 6168 16448 6146 59369 49089

...
3072 65409 61457 7168 128 4080

...
4092 12 65503 8188 65525 34
4093 65532 14 8189 5 65523
4094 2 65531 8190 65535 6
4095 65536 2 8191 1 65535

8192 0 2
8193 1 2

Table 3: F4

Now, the period is: 8192 = (F4 − 1)/8 .
We find for F4 the same kind of symmetries we had for F2 and F3.

Also notice: U1024 ≡ −27 , V1024 ≡ 212 − 24 , U2046 ≡ 24F3 , V2046 ≡ −26F3

, U2047 ≡ −23F3 , V2047 ≡ 25F3 , U2048 ≡ 211 + 23 ≡ 23F3 (mod F4).
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3.4 Pell numbers (mod F5)

i Un[F5] Vn[F5] i Un[F5] Vn[F5]

0 0 2 5583680 0 4294967295
1 1 2 5583681 4294967296 4294967295
2 2 6 5583682 4294967295 4294967291
3 5 14 5583683 4294967292 4294967283
4 12 34 5583684 4294967285 4294967263

...
1395920 4294934529 16776960 6979600 32768 4278190337

...
2791837 4236246145 167774720 8375517 58721152 4127192577
2791838 25166208 4227857409 8375518 4269801089 67109888
2791839 4286578561 33554944 8375519 8388736 4261412353
2791840 8388736 0 8375520 4286578561 0
2791841 8388736 33554944 8375521 4286578561 4261412353
2791842 25166208 67109888 8375522 4269801089 4227857409
2791843 58721152 167774720 8375523 4236246145 4127192577

...
5583676 12 4294967263 11167356 4294967285 34
5583677 4294967292 14 11167357 5 4294967283
5583678 2 4294967291 11167358 4294967295 6
5583679 4294967296 2 11167359 1 4294967295

11167360 0 2
11167361 1 2

Table 4: F5

Here, the period is: 11167360 = 27 × 5 × 17449 .
Since: F5 = f1 × f2 and f1 = 641 = 1 + 5 × 27 , f2 = 6700417 = 1 + 3 ×
17449×27 , it appears that the period is equal to: ((f1−1)(f2−1))/(3×27).

We also observe the same symmetries we saw with Fn , for n = 2, 3, 4 .

Also notice: U2791840/2 ≡ −215 , V2791840/2 ≡ 28 × F0 × F1 × F2 × F3 ,
U2791838 ≡ 3 × 27F4 , V2791838 ≡ 210F4 , U2791839 ≡ −27F4 , V2791839 ≡ 29F4

, U2791840 ≡ 223 + 27 ≡ 27F4 (mod F5).

3.5 General Properties of Pell numbers (mod Fn)

With Fn prime, we clearly see that we have the following properties:

• Period of (Ui, Vi) (mod Fn) :
Let call: Pn the period of (Ui, Vi) (mod Fn) .
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Let call: pn = 3 × 2n−2 + 1 .
We have: Pn = 2pn and kn = pn − 2 .

• Values of i such that Fn | Ui or Fn | Vi :
We have: Fn | Ui for i = α

2 Pn , and Fn | Vi for i = 4α±1
4 Pn , α = 0, 1, ... .

Let call:

{

IU the values of i such that Fn | Ui

IV the values of i such that Fn | Vi

• We have the following symmetries :






















UIU+β ≡ (−1)β−1UIU−β

VIV +β ≡ (−1)β−1VIV −β

UIV +β ≡ (−1)βUIV −β

VIU+β ≡ (−1)βVIU−β

n Fn IU IV period Pn

2 24 + 1 8 = 23 4 = 22 24

16 = 24 12 = 3 × 24

64 = 26 32 = 25

3 28 + 1 128 = 27 96 = 3 × 25 27

... ...

4096 = 212 2048 = 211

4 216 + 1 8192 = 213 6144 = 3 × 211 213

... ...

5 232 + 1 5583680 2791840 11167360
11167360 8375520

Table 5: Period of Pell Sequence modulo a Fermat number

n Fn U (Fn−1)/2 V 3×2n−2−1
2

2 24 + 1 U23 V22

3 28 + 1 U27 V25

4 216 + 1 U215 V211

5 232 + 1 U231 V223

Table 6: V
2kn

3.6 Pell numbers (mod 2i)

For numbers 2i, Uj ≡ 0(mod 2i) for j = 2i and the period is 2i . There is
no j such that Vj ≡ 0(mod 2i) .
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3.7 Pell numbers (mod a prime number )

Here we provide information about the Pell sequence modulo different prime
numbers. All these numbers share the symmetry properties around the ranks
for which Ui ≡ 0 and Vi ≡ 0 : IU and IV .

p IU IV period

5 3 , 6 , 9 , 12 12 2(p + 1)
7 6 3 6 p − 1

11 12 , 24 6 , 18 24 2(p + 1)
13 7 , 14 , 21 , 28 28 2(p + 1)
17 8 , 16 4 , 12 16 p − 1
19 20 , 40 10 , 30 40 2(p + 1)
23 22 11 22 p − 1
29 10 , 20 20 2/3(p + 1)
31 30 15 30 p − 1
37 19 , 38 , 57 , 76 76 2(p + 1)
41 10 5 10 (p − 1)/4
43 44 , 88 22 , 66 88 2(p + 1)
47 46 23 46 p − 1
53 27 , 54 , 81 , 108 108 2(p + 1)
59 20 , 40 10 , 30 40 2/3(p + 1)
61 31 , 62 , 93 , 124 124 2(p + 1)
67 68 , 136 34 , 102 136 2(p + 1)
71 70 35 70 p − 1
73 36 , 72 18 , 54 72 p − 1
79 26 13 26 (p − 1)/3

Table 7: Periods of Pell Sequence modulo a Prime

3.8 Pell numbers (mod a Mersenne number )

Here we provide information about the Pell sequence modulo several Mersenne
numbers (prime or not). All these numbers share the symmetry properties
around the ranks for which Ui ≡ 0 and Vi ≡ 0 : IU and IV .
They mainly differ by the main period (when the sequence of residues
restarts from begining) and by secondary periods (the number of time
the element is congruent to 0).
It appears that the main period divides Mq − 1 for Mersenne primes (like
for Fermat primes) but with no apparent rule.
About secondary periods, Mersenne primes seem to have only one secondary
period, compared to the 2 secondary periods for Fermat primes.
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p IU IV period

23 − 1 6 3 6 = 2.3 = 23 − 2
24 − 1 12 , 24 24 = 23.3
25 − 1 30 15 30 = 2.3.5 = 25 − 2
26 − 1 12 , 24 24 = 23.3
27 − 1 126 63 126 = 2.32.7 = 27 − 2
28 − 1 24 , 48 48 = 24.3
29 − 1 36 , 72 72 = 23.32

210 − 1 60 , 120 120 = 23.3.5
211 − 1 44 , 88 88 = 23.11
212 − 1 84 , 168 168 = 23.3.7
213 − 1 630 315 630 = 2.32.5.91 = (213 − 2)/13
214 − 1 2772 , 5544 5544 = 23.32.7.11
215 − 1 150 75 150 = 2.3.52

216 − 1 192 , 384 384 = 27.3
217 − 1 131070 65535 131070 = 2.3.5.17.257 = 217 − 2
218 − 1 180 , 360 360 = 23.32.5
219 − 1 74898 37449 74898 = 2.33.19.73 = (219 − 2)/7
220 − 1 60 , 120 120 = 23.3.5
221 − 1 252 , 1504 1504 = 23.32.7
222 − 1 2508 , 5016 5016 = 23.3.11.19
223 − 1 4462 , 8924 8924 = 22.23.97
224 − 1 840 , 1680 1680 = 24.3.5.7
225 − 1 900 , 1800 1800 = 23.32.52

226 − 1 860580 , 1721160 1721160 = 23.32.5.7.683
227 − 1 65664 , 131328 131328 = 28.33.19
228 − 1 13860 , 27720 27720 = 23.32.5.7.11
229 − 1 6612 , 13224 13224 = 23.3.19.29
230 − 1 24900 , 49800 49800 = 23.3.52.83
231 − 1 1099582 549791 1099582 = (231 − 2)/(32.7.31)
232 − 1 12288 , 24576 24576 = 213.3
233 − 1 1198956 , 2397912 2397912 = 23.3.11.31.293
234 − 1 86768340 , 173536680 173536680 = 23.3.5.17.257.331
235 − 1 553140 , 1106280 1106280 = 23.32.5.7.439
236 − 1 263340 , 526680 526680 = 23.32.5.7.11.19

Table 8: Periods of Pell Sequence modulo Mq
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p IU IV period

6 4 , 8 2 , 6 8
8 8 8
9 12 , 24 6 , 18 24

10 6 , 12 12
12 4 , 8 8
14 6 3 6
15 12 , 24 24
16 16 16
18 12 , 24 6 18 24
20 12 12
21 12 , 24 24
22 12 , 24 6 , 18 24
24 8 8
25 15 , 30 , 45 , 60 60
26 14 28 28
27 36, 72 18 , 54 72
28 12 12
30 12 , 24 24
32 32 32
33 12 , 24 6 , 18 24
34 8 , 16 4 , 12 16
35 6 , 12 12
36 12 , 24 24
38 20 , 40 10 , 30 40
39 28 , 56 56
40 24 24
42 12 , 24 24
44 12 , 24 24
45 12 , 24 24
46 22 11 22
48 16 16
49 42 21 42
50 30 , 60 60
51 8 , 16 16
52 28 28
54 36 , 72 18 , 54 72
55 12 , 24 24

Table 9: Periods of Pell Sequence modulo a Composite
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3.9 Pell numbers (mod a composite number )

3.10 Conclusion of Pell numbers (mod N)

It appears that the main difference between Fermat primes and other num-
bers is the period (lower than the modulo) and the 2 sub-periods.

4 Properties of Pell numbers

4.1 Proven Properties

Here are several properties of Pell numbers, derived from Ribenboim’s or
Williams’ books:

• By W(4.2.29) page 77, we have:

Vn = 2

⌊n
2
⌋

∑

i=0

(

n

2i

)

2i

• By R(IV.8) page 47, we have:

V2j = 2
2j−1
∑

i=0

(

2j

2i

)

2i

• By W(4.2.29) page 77, we have:

Un =

⌊n−1
2

⌋
∑

i=0

(

n

2i + 1

)

2i

• Another formula from Rajesh Ram:

Un = 2

⌊n+1
2

⌋
∑

i=1

(

n − i

i − 1

)

2n−2i

• By R(IV.14) page 49 :

Fn prime =⇒ VFn
≡ P = 2 (mod Fn)

• By R(IV.13) page 49 , we have:

Fn prime =⇒ UFn
≡ 1 (mod Fn)

• By R(IV.22) page 53, we have:

Fn ∤ 2QD and Fn prime =⇒ VFn−1 ≡ 2 (mod Fn)

• By R(IV.30) page 55, we have the general period property:

p ∤ 2QD,
(

D/p
)

= 1 =⇒
{

Un+p−1 | Un (mod p)

Vn+p−1 | Vn (mod p)
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• The minimum polynomial for: sin 2π/p is:

Sp(x) =

(p−1)/2
∑

i=0

(−1)i

(

p

2i + 1

)

(1 − x2)(p−1)/2−ix2i

Sp(
√

2) = (−1)(p−1)/2

p−1
2

∑

i=0

(

p

2i + 1

)

2i and Sp(
√

2) = Up(2,−1) for p odd

5 Unproven Properties (mod Fn)

Here are collected a list of properties verified by the Un(2,−1) and Vn(2,−1)
Lucas sequences, for n = 2, 3, 4.

Vn = 2(Un + Un−1)

Vn = 2 + 4
n−1
∑

i=1

Ui

V 2
i + V 2

i+1 = V2i + V2(i+1)

Upk+q ≡ (−1)q−1Upk−q (mod Fn) with: k = 23×2n−2−1, p = 1..., q = 1...

Up±k ≡ 1

2
UkVp with: k = 23×2n−2−1

Let: αn = 22n−2
n−2
∏

i=0

Fi = (Fn−2 − 1)(Fn−1 − 2)

we have: α 2
n − 2 ≡ 0 (mod Fn)

6 Conclusions

Though it is clear that Édouard Lucas had made numerical experiments
with his Sn = S2

n−1 − 2 sequence starting with S0 = 6, it seems that he
did not study in details the period of the Pell Sequence modulo a Fermat
number or modulo another number.
Otherwise, I think he would have given this information.

What is needed for proving the conjecture ?

⋆ First, a clear proof of: Fn is a prime ⇐⇒ Fn | UF(n−1)/2(2,−1) must be

built. Then it will be immediate to show: Fn | Skn =⇒ Fn is a prime.

⋆ Second, a proof of the results we saw about the period of the Pell sequences
(2,−1) modulo a Fermat prime must be built. Then it will be immediate to
show: Fn is a prime =⇒ Fn | Skn .
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7 Miscellaneous Properties of Lucas Sequences

• By W(4.2.27) page 76, we have:

VpVq = Up+q − (−1)qUp−q

• By W(4.2.6) page 74, we have:

U2n =
n−1
∏

i=0

V2i

• By R(IV.10) page 48, we have:

Un = Q(n−1)/2 +

(n−3)/2
∑

i=0

QiVn−(2i+1) , n odd

• By the binomial formula:

(1 + 2)n =
n

∑

i=0

(

n

i

)

2i = 3n

• By ???, we have:

[

n
∑

i=0

(

n

i

)

xi
]2

=
n

∑

i=0

(

2n

2i

)

x2i

• By ???, we have:

[

n
∑

i=0

(

n

i

)

xi
]

2

×
[

n
∑

i=0

(−1)i

(

n

i

)

xi
]

2

=
n

∑

i=0

(−1)i

(

n

i

)

x2i
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