# A primality test for Fermat numbers faster than Pépin test ? <br> Conjecture and bits of history <br> Tony Reix (Tony.Reix@laposte.net) <br> 2004, 26th of October 

- This paper presents a conjecture that, if proven, would reduce by $25 \%$ the time needed for proving the primality of a Fermat number.
- The smallest Fermat number whose primality status is unknown is: $F_{33}$, which is nearly 6 billions characters. A very large number. Proving it is a prime or a composite number would take years.
Proving the primality or the compositeness of Fermat numbers is done by means of a test provided by Th. Pépin in 1877. The test is simple and fast.
- While studying some Lucas sequence for Fermat numbers by means of the function: $x \mapsto 2 x^{2}-1$, I discovered a "fixed point": the number 3 always appears at the same relative rank $\left(2^{n-2}\right)$ in the sequence. Considering a new Lucas sequence starting from the equivalent value (6) for $x \mapsto x^{2}-2$, I found that this led to a well-known Lucas Sequence: the Pell numbers, built with $(P, Q)=(2,-1)$. After some study, it seemed possible that this Lucas sequence could provide: if $F_{n}$ divides $V_{k_{n}}$, where $k_{n}=2^{3 * 2^{n-2}-1}$, then $F_{n}$ is prime. Proving the converse also seems possible due to numerical facts showing remarkable periods for $n=2,3,4$ and not for $n=5$, but the proof seems difficult.
- While I was looking for information about primality tests based on Pell numbers, I found in Williams' book that this Lucas sequence had already been studied and used by Édouard Lucas himself for providing a weaker primality test for Fermat numbers. He used a first version of this test in his book "Récréations Mathématiques".
Again in William's book appears a theorem from Emma Lehmer showing that $F_{n}$ is prime if it divides $U_{\left(F_{n}-1\right) / 16}(2,-1)$, for $n \geq 4$.
- Either Édouard Lucas discovered the properties I will describe hereafter in my paper but he failed to prove them and chose to provide a weaker proof, or he discovered only a sub-part. As H.C. Williams says in his book, Édouard Lucas was studying many subjects at the same time, and he may not have spent enough time to this. Also, it seems that Lucas often considered the "necessity" part of a theorem not so important ...
[ In the following, $\mathrm{R}(\ldots)$ refers to a theorem or property appearing in Paulo Ribenboim's book: "The Little Book of Bigger Primes" ; and W(...) refers to H.C. Williams' book: "Édouard Lucas and Primality Testing". L(...) refers to Lucas paper in the American Journal of Mathematics 1878. ]

Conjecture 1 (Lucas-Reix) Let $n \geq 2, F_{n}=2^{2^{n}}+1, \mathrm{k}_{n}=3 \times 2^{n-2}-1$. $F_{n}$ is a prime $\Longleftrightarrow F_{n} \mid S_{\mathrm{k}_{n}}$, where: $S_{1}=6, S_{i+1}=S_{i}^{2}-2$.

Compared to the Pépin test which requires $2^{n}-1$ operations, testing only up to $3 \times 2^{n-2}-1$ would provide a gain of $25 \%$ in speed.

## $1 \quad F_{n}$ prime $\Longrightarrow F_{n} \mid U_{\left(F_{n}-1\right) / 2}(2,-1)$

Let: $N=F_{n}$ a prime.
We use: $x \mapsto x^{2}-2$ for building a sequence starting from 6 .
We have: $S_{1}=V_{2}=6, S_{2}=V_{4}=34, S_{3}=V_{8}=1154, \ldots \quad S_{i}=V_{2^{i}}$
By $\mathrm{W}(4.2 .7)$ page $74\left(V_{2 n}=V_{n}^{2}-2 Q^{n}\right)$, we have: $\left\{\begin{array}{l}V_{4}=V_{2}^{2}-2 Q^{2} \\ V_{8}=V_{4}^{2}-2 Q^{4}\end{array}\right.$
and thus: $Q=\sqrt[2]{\frac{V_{2}^{2}-V_{4}}{2}}=\sqrt[4]{\frac{V_{4}^{2}-V_{8}}{2}}= \pm 1$.
By W(4.1.3) page $70\left(V_{n+1}=P V_{n}-Q V_{n-1}\right)$, and with:

$$
\left\{\begin{array}{l}
V_{0}=2 \\
V_{1}=P \\
V_{2}=P V_{1}-Q V_{0}=P^{2}-2 Q
\end{array}\right.
$$

we have: $P=\sqrt{V_{2}+2 Q}=2 \sqrt{2}$ or 2 , and $D=P^{2}-4 Q=4$ or 8 .

$$
\left\{\begin{array} { l } 
{ ( P , Q ) = ( 2 \sqrt { 2 } , + 1 ) , D = 4 } \\
{ \epsilon = ( \mathrm { D } / \mathrm { N } ) = ( 4 / \mathrm { N } ) = 1 } \\
{ \sigma = ( \mathrm { R } / \mathrm { N } ) = ( 8 / \mathrm { N } ) = 1 } \\
{ \tau = ( \mathrm { Q } / \mathrm { N } ) = ( 1 / \mathrm { N } ) = 1 }
\end{array} \quad \left\{\begin{array}{l}
(P, Q)=(2,-1), D=8 \\
\epsilon=(\mathrm{D} / \mathrm{N})=(8 / \mathrm{N})=1 \\
\sigma=(\mathrm{R} / \mathrm{N})=(4 / \mathrm{N})=1 \\
\tau=(\mathrm{Q} / \mathrm{N})=(-1 / \mathrm{N})=1
\end{array}\right.\right.
$$

For both $Q=1$ and $Q=-1$, by theorem $\mathrm{W}(8.4 .1)$ page 197 , since $\sigma=\tau$, and since $N$ is a prime, thus we have: $N \mid \bar{U}_{(N-\sigma \epsilon) / 2}=\bar{U}_{(N-1) / 2}=\bar{U}_{2^{2^{n}-1}}$ , and by $\mathrm{W}(4.2 .6)$ page $74: N \mid \bar{U}_{2^{2^{n}}}$.
Since $U_{2^{n}}=\prod_{i=0}^{n-1} V_{2^{i}}$, thus it must exist some $x \leq 2^{n}-1$ such that $F_{n} \mid V_{2^{x}}$.
Hereafter, we consider $(P, Q)=(2,-1)$ (And thus: $\bar{U} n=U_{n}$ and $\left.\bar{V}_{n}=V_{n}\right)$. This Lucas Sequence builds the Pell numbers ( $U_{n}$ ) and the companion Pell numbers $\left(V_{n}\right)$, which first values are provided page 61 of Ribenboim's book.

$$
\text { We have: }\left\{\begin{array}{lll}
U_{n}=2 U_{n-1}+U_{n-2} & U_{0}=0 & U_{1}=1 \\
V_{n}=2 V_{n-1}+V_{n-2} & V_{0}=2 & V_{1}=2
\end{array}\right.
$$

## 2 Bits of history

### 2.1 A first theorem of Lucas about $F_{n}$ numbers

In his book, H.C Williams provides a theorem from Lucas:
Theorem 1 (Lucas $\mathbf{W}(\mathbf{5 . 2 . 1})$ page 99) Let $F_{n}=2^{r}+1\left(r=2^{n}\right)$ and $T_{1}=3$. If we define the sequence $\left\{T_{i}\right\}$ by $T_{i+1}=2 T_{i}^{2}-1$, then $F_{n}$ is a prime if the first term of this sequence which is divisible by $F_{n}$ is $T_{r-1} \ldots$ (then info about compositeness)

I think there could be some mistakes here.

- Starting from: $T_{1}=3$, and with: $V_{2^{i}}=2 T_{i}$, then we have: $T_{1}=3, T_{2}=$ $17, T_{3}=577, \ldots T_{5} \equiv 0(\bmod 257)$. And thus $F_{n}$ seems to be prime if it divides $T_{3 \times 2^{n-2}-1}$. [This leads to $(P, Q)=(\sqrt{8}, 1)$ or $(P, Q)=(\sqrt{4},-1)$, with $\epsilon=1, \sigma=1, \tau=1$ in both cases. Since $\sigma=\tau$, then by Theorem $\mathrm{W}(8.4 .1)$ page 197 we have: $F_{n}$ prime $\left.\Longrightarrow F_{n} \mid \bar{U}_{\left(F_{n}-\sigma \tau\right) / 2=2^{2^{n}-1}}.\right]$
- Now, if we use: $T_{1}=4$ and again: $V_{2^{i}}=2 T_{i}$, then we have: $T_{1}=$ $4, T_{2}=31, T_{3}=1921=17 * 113, \ldots T_{7} \equiv 0(\bmod 257)$. And thus $F_{n}$ seems to be a prime if it divides $T_{r-1}$. [ This leads to $(P, Q)=(\sqrt{10}, 1)$ or $(P, Q)=(\sqrt{6},-1)$, with $\epsilon=-1, \sigma=-1, \tau=1$ in both cases. Since $\sigma=-\tau$, then by Theorem $\mathrm{W}(8.4 .1)$ page 197 we have: $F_{n}$ prime $\Longrightarrow F_{n} \mid$ $\left.\bar{V}_{\left(F_{n}-\sigma \tau\right) / 2=2^{2^{n}-1}}=2 T_{2^{n}-1}=2 T_{r-1}.\right]$
So it seems the theorem should use: $T_{1}=4$.


### 2.2 A very interesting theorem of Lucas

Next page, H.C. Williams says that Lucas used the following theorem for proving that $F_{6}$ is composite (probably the first time a number has been proven composite without any knowledge of his factors):

Theorem 2 (Lucas $\mathbf{W}(\mathbf{5 . 2 . 2})$ page 100) Let $F_{n}=2^{r}+1\left(r=2^{n}\right)$ and $S_{1}=6=V_{2}(2,-1)$. If we define the sequence $\left\{S_{i}\right\}$ by $S_{i+1}=S_{i}^{2}-2$, then $F_{n}$ is a prime when $F_{n} \mid S_{k}$ for some $k$ such that $r / 2 \leq k \leq r-1$. Also, $F_{n}$ is composite if $F_{n} \nmid S_{k}$ for all $k \leq r-1$. Finally, if $F_{n} \mid S_{k}$ with $k \leq r / 2$, then any prime divisor of $F_{n}$ must have the form $2^{k+1} q+1$.

This test is sufficient for proving the primality of a Fermat number, but it is not necessary.
H.C. Williams does not provide the proof. Rather, he says that "by using the same reasoning as that employed in the proof of Theorem (5.1.2) the result follows easily". Since this proof deals with Mersenne numbers and is based on the facts that $M_{n} \mid U_{M_{\alpha}+1}$ and $M_{n} \nmid U_{\left(M_{\alpha}+1\right) / 2}$ in order to say that the rank of apparition $\omega$ (the least value of $m$ such that $m \mid U_{n}$ ) of a prime divisor of $M_{n}$ is $2^{\alpha}$, probably based on theorem $\mathrm{W}(4.3 .13)$ page 90 ,
and since we have seen previously that $F_{n} \mid \bar{U}_{2^{2^{n}-1}}$ and $F_{n} \mid \bar{U}_{2^{2^{n}}}$, there is something I don't understand.

The original text from Lucas is really not clear, even for a French reader. Lucas says that this theorem is a direct consequence of his "fundamental theorem" and of the duplication formulae, with no complementary explanation. I propose here another translation:

Theorem 3 (Lucas $\mathbf{L}(\mathbf{X X V I I I})$ page 313) Let $F_{n}=2^{2^{n}}+1$; we create the sequence of the $2^{n}-1$ numbers: $6,34,1154,1331714,177346217794, \ldots$ , so that each of them is equal to the square of the previous one minus 2. The number $F_{n}$ is a prime when the first element of the sequence which is divisible by $F_{n}$ appears between rank $2^{n-1}$ and rank $2^{n}-1$; it is a composite number if no element of the sequence is divisible by $F_{n}$. Finally, if $\alpha<2^{n-1}$ is the rank of the first element of the sequence which is divisible by $F_{n}$, the prime divisors of $F_{n}$ have the form: $2^{2^{n+1}} q+1$.

Then Lucas says that Father Pépin's method is appropriate for proving that a Fermat number is prime. But, since (according to Father Mersenne) Fermat numbers $F_{n}$ with $n>4$ seem to be all composite, instead of knowing if the Fermat number is prime or not when the last operation is done by means of Pépin's test, it would be more efficient to use one of the $\phi\left(2^{n-1}\right)$ numbers that belong to exponent $2^{n-1}$ (not clear for me ...).
(It is clear that a clear proof for Lucas' theorem would be really useful.)
I also suspect that errors may have been added to the original manuscript and that Lucas did not fixed them all before it was published.

## $2.3 \quad F_{6}$ in "Récréations Mathématiques"

In his book: "Récréations Mathématiques", published in 1891, page 235, Édouard Lucas says that, starting with $S_{0}=6$ and using: $S_{i+1}=S_{i}^{2}-2$, $F_{n}$ is prime if $F_{n} \mid S_{2^{n}-1}$. He also says that he used this for proving that $F_{6}=2^{64}+1$ is composite. So $2^{n}-1=63$ operations were required.

### 2.4 A hint from Édouard Lucas

In his book, page 108, H.C. Williams' provides comments from Édouard Lucas about his method. The most interesting information is that Lucas explains that his procedure is able to prove the primality of $F_{2}, F_{3}, F_{4}$ "by executing respectively 3,6 , or 12 operations instead of the maximum number of 4,8 and 16 operations which would be required by the other method".

These numbers of operations: 3,6 , and 12 are equal to the value of $\mathrm{k}_{n}$ for $n=2,3,4$, plus 1 :

$$
\mathrm{k}_{2}=3 \times 2^{0}-1=2, \quad \mathrm{k}_{3}=3 \times 2^{1}-1=5, \quad \mathrm{k}_{4}=3 \times 2^{2}-1=11
$$

### 2.5 A Theorem from Emma Lehmer

Page 108 and 109 of his book, Williams provides a theorem of Emma Lehmer that can be used for proving the primality of Fermat numbers. It requires 4 steps less than Pépin's test when $n \geq 4$. Maybe it is a first step in the direction of a proof of our conjecture, since $\frac{F_{4}-1}{16}=4096=2 k_{4}$.

Theorem 4 (E. Lehmer $\mathbf{W}(5.4 .1)$ page 108) If $p$ is a prime such that $p \equiv 1(\bmod 32)$ and $p=a^{2}+64 b^{2}=c^{2}+128 d^{2} \quad(a, b, c, d \in \mathbb{Z})$, then $U_{(p-1) / 16}(2,-1) \equiv 0(\bmod p)$ if and only if $b \equiv d(\bmod 2)$.

Since $F_{n}=\left(2^{2^{n-1}}\right)^{2}+1=\left(2^{2^{n-1}}-1\right)^{2}+2\left(2^{2^{n-2}}\right)^{2}$, thus, if $n \geq 4$ and $F_{n}$ is a prime, we must have: $U_{\left(F_{n}-1\right) / 16}(2,-1) \equiv 0\left(\bmod F_{n}\right)$. It follows that if $F_{n}$ is a prime, then $F_{n} \mid S_{t}$, where $t \leq r-5(n \geq 4)$.

## 3 Computed properties of Pell numbers $\left(\bmod F_{n}\right)$

### 3.1 Pell numbers $\left(\bmod F_{2}\right)$

| $i$ | $U_{n}$ | $U_{n}\left[F_{2}\right]$ | $V_{n}$ | $V_{n}\left[F_{2}\right]$ | $i$ | $U_{n}$ | $U_{n}\left[F_{2}\right]$ | $V_{n}$ | $V_{n}\left[F_{2}\right]$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | $\mathbf{0}$ | 2 | 2 | 8 | 408 | $\mathbf{0}$ | 1154 | 15 |
| 1 | 1 | 1 | 2 | 2 | 9 | 985 | 16 | 2786 | 15 |
| 2 | 2 | 2 | 6 | 6 | 10 | 2378 | 15 | 6726 | 11 |
| 3 | 5 | 5 | 14 | 14 | 11 | 5741 | 12 | 16238 | 3 |
| 4 | 12 | 12 | 34 | $\mathbf{0}$ | 12 | 13860 | 5 | 39202 | $\mathbf{0}$ |
| 5 | 29 | 12 | 82 | 14 | 13 | 33461 | 5 | 94642 | 3 |
| 6 | 70 | 2 | 198 | 11 | 14 | 80782 | 15 | 228486 | 6 |
| 7 | 169 | 16 | 478 | 2 | 15 | 195025 | 1 | 551614 | 15 |
| $\mathbf{1 6}$ | 470832 | $\mathbf{0}$ | 1331714 | 2 |  |  |  |  |  |
| 17 | 1136689 | 1 | 3215042 | 2 |  |  |  |  |  |
| $\ldots$ |  |  |  |  |  |  |  |  |  |

Table 1: $F_{2}$
It appears clearly that there is a period of $16=F_{2}-1$ amongst the values of $U_{i}$ and $V_{i}$ modulo $F_{2}$. As seen later, the period $F_{n}-1$ amongst the $U_{i}$ and $V_{i}$ sequences can be easily proven for all primes, not only for Fermat numbers. Also, we have the following symmetries:

$$
\begin{gathered}
U_{8+i} \equiv-U_{i}, V_{8+i} \equiv-V_{i}, U_{8+i} V_{8+i} \equiv U_{i} V_{i} \quad \text { for } i=0 \ldots 7 . \\
U_{4 j+i} \equiv(-1)^{i+j-1} U_{4 j-i}, V_{4 j+i} \equiv(-1)^{i+j} V_{4 j-i} \quad \text { for } i, j=1 \ldots 4 .
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& U_{9} \equiv-U_{1}, V_{15} \equiv-V_{7}, U_{1} V_{2} \equiv U_{10} V_{10} \equiv 12 \\
& U_{5} \equiv-U_{3}, U_{6} \equiv U_{2}, V_{5} \equiv V_{3}, V_{6} \equiv-V_{2}
\end{aligned}
$$

Also notice: $U_{2} \equiv 2^{1}, V_{2} \equiv 2^{3}-2^{1}, U_{4} \equiv 2^{3}+2^{2}\left(\bmod F_{2}\right)$.

### 3.2 Pell numbers $\left(\bmod F_{3}\right)$

| $i$ | $U_{n}\left[F_{3}\right]$ | $V_{n}\left[F_{3}\right]$ | $i$ | $U_{n}\left[F_{3}\right]$ | $V_{n}\left[F_{3}\right]$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $\mathbf{0}$ | 2 | 64 | $\mathbf{0}$ | 255 |
| 1 | 1 | 2 | 65 | 256 | 255 |
| 2 | 2 | 6 | 66 | 255 | 251 |
| 3 | 5 | 14 | 67 | 252 | 243 |
| 4 | 12 | 34 | 68 | 245 | 223 |
| $\ldots$ |  |  |  |  |  |
| 8 | 151 | 126 | 72 | 106 | 131 |
| $\ldots$ |  |  |  |  |  |
| 16 | 8 | 197 | 80 | 249 | 60 |
| $\ldots$ |  |  |  |  |  |
| 24 | 86 | 24 | 88 | 171 | 233 |
| $\ldots$ |  |  |  |  |  |
| 31 | 223 | 136 | 95 | 34 | 121 |
| 32 | 34 | $\mathbf{0}$ | 96 | 223 | $\mathbf{0}$ |
| 33 | 34 | 136 | 97 | 223 | 121 |
| $\ldots$ |  |  |  |  |  |
| 40 | 86 | 233 | 104 | 171 | 24 |
| $\ldots$ |  |  |  |  |  |
| 48 | 8 | 60 | 112 | 249 | 197 |
| $\ldots$ |  |  |  |  |  |
| 56 | 151 | 131 | 120 | 106 | 126 |
| $\ldots$ |  |  |  |  |  |
| 60 | 12 | 223 | 124 | 245 | 34 |
| 61 | 252 | 14 | 125 | 5 | 243 |
| 62 | 2 | 251 | 126 | 255 | 6 |
| 63 | 256 | 2 | 127 | 1 | 255 |
| $\mathbf{1 2 8}$ | $\mathbf{0}$ | 2 |  |  |  |
| 129 | 1 | 2 |  |  |  |

Table 2: $F_{3}$
Now, the period is: $128=\left(F_{3}-1\right) / 2$. No general property of Lucas sequence exists for proving this period. A specific property must be built for this case. We find for $F_{3}$ the same kind of symmetries we had for $F_{2}$ :

$$
\begin{gathered}
U_{64+i} \equiv-U_{i}, V_{64+i} \equiv-V_{i}, U_{64+i} V_{64+i} \equiv U_{i} V_{i} \quad \text { for } i=0 \ldots 63 . \\
U_{32 j+i} \equiv(-1)^{i+j-1} U_{32 j-i}, V_{32 j+i} \equiv(-1)^{i+j} V_{32 j-i} \quad \text { for } i, j=1 \ldots 32 .
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& U_{65} \equiv-U_{1}, V_{120} \equiv-V_{56}, U_{60} V_{60} \equiv U_{124} V_{124} \equiv 106 \\
& U_{33} \equiv-U_{31}, U_{48} \equiv U_{16}, V_{61} \equiv V_{3}, V_{48} \equiv-V_{16}
\end{aligned}
$$

Also notice: $U_{16} \equiv 2^{3}, V_{16} \equiv-\left(2^{6}-2^{2}\right), V_{31} \equiv 2^{3} F_{2}, U_{32} \equiv 2^{5}+2^{1} \equiv 2^{1} F_{2}$.

### 3.3 Pell numbers $\left(\bmod F_{4}\right)$

| $i$ | $U_{n}\left[F_{4}\right]$ | $V_{n}\left[F_{4}\right]$ | $i$ | $U_{n}\left[F_{4}\right]$ | $V_{n}\left[F_{4}\right]$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $\mathbf{0}$ | 2 | 4096 | $\mathbf{0}$ | 65535 |
| 1 | 1 | 2 | 4097 | 65536 | 65535 |
| 2 | 2 | 6 | 4098 | 65535 | 65531 |
| 3 | 5 | 14 | 4099 | 65532 | 65523 |
| 4 | 12 | 34 | 4100 | 65525 | 65503 |
| $\ldots$ |  |  |  |  |  |
| 1024 | 65409 | 4080 | 5120 | 128 | 61457 |
| $\ldots$ |  |  |  |  |  |
| 2046 | 6168 | 49089 | 6142 | 59369 | 16448 |
| 2047 | 63481 | 8224 | 6143 | 2056 | 57313 |
| 2048 | 2056 | $\mathbf{0}$ | 6144 | 63481 | $\mathbf{0}$ |
| 2049 | 2056 | 8224 | 6145 | 63481 | 57313 |
| 2050 | 6168 | 16448 | 6146 | 59369 | 49089 |
| $\ldots$ |  |  |  |  |  |
| 3072 | 65409 | 61457 | 7168 | 128 | 4080 |
| $\ldots$ |  |  |  |  |  |
| 4092 | 12 | 65503 | 8188 | 65525 | 34 |
| 4093 | 65532 | 14 | 8189 | 5 | 65523 |
| 4094 | 2 | 65531 | 8190 | 65535 | 6 |
| 4095 | 65536 | 2 | 8191 | 1 | 65535 |
| $\mathbf{8 1 9 2}$ | $\mathbf{0}$ | 2 |  |  |  |
| 8193 | 1 | 2 |  |  |  |

Table 3: $F_{4}$
Now, the period is: $8192=\left(F_{4}-1\right) / 8$.
We find for $F_{4}$ the same kind of symmetries we had for $F_{2}$ and $F_{3}$.
Also notice: $U_{1024} \equiv-2^{7}, V_{1024} \equiv 2^{12}-2^{4}, U_{2046} \equiv 24 F_{3}, V_{2046} \equiv-2^{6} F_{3}$ $, U_{2047} \equiv-2^{3} F_{3}, V_{2047} \equiv 2^{5} F_{3}, U_{2048} \equiv 2^{11}+2^{3} \equiv 2^{3} F_{3}\left(\bmod F_{4}\right)$.

### 3.4 Pell numbers $\left(\bmod F_{5}\right)$

| $i$ | $U_{n}\left[F_{5}\right]$ | $V_{n}\left[F_{5}\right]$ | $i$ | $U_{n}\left[F_{5}\right]$ | $V_{n}\left[F_{5}\right]$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $\mathbf{0}$ | 2 | 5583680 | $\mathbf{0}$ | 4294967295 |
| 1 | 1 | 2 | 5583681 | 4294967296 | 4294967295 |
| 2 | 2 | 6 | 5583682 | 4294967295 | 4294967291 |
| 3 | 5 | 14 | 5583683 | 4294967292 | 4294967283 |
| 4 | 12 | 34 | 5583684 | 4294967285 | 4294967263 |
| $\ldots$ |  |  |  |  |  |
| 1395920 | 4294934529 | 16776960 | 6979600 | 32768 | 4278190337 |
| $\ldots$ |  |  |  |  |  |
| 2791837 | 4236246145 | 167774720 | 8375517 | 58721152 | 4127192577 |
| 2791838 | 25166208 | 4227857409 | 8375518 | 4269801089 | 67109888 |
| 2791839 | 4286578561 | 33554944 | 8375519 | 8388736 | 4261412353 |
| 2791840 | 8388736 | $\mathbf{0}$ | 8375520 | 4286578561 | $\mathbf{0}$ |
| 2791841 | 8388736 | 33554944 | 8375521 | 4286578561 | 4261412353 |
| 2791842 | 25166208 | 67109888 | 8375522 | 4269801089 | 4227857409 |
| 2791843 | 58721152 | 167774720 | 8375523 | 4236246145 | 4127192577 |
| $\ldots$ |  |  |  |  |  |
| 5583676 | 12 | 4294967263 | 11167356 | 4294967285 | 34 |
| 5583677 | 4294967292 | 14 | 11167357 | 5 | 4294967283 |
| 5583678 | 2 | 4294967291 | 11167358 | 4294967295 | 6 |
| 5583679 | 4294967296 | 2 | 11167359 | 1 | 4294967295 |
| $\mathbf{1 1 1 6 7 3 6 0}$ | $\mathbf{0}$ | 2 |  |  |  |
| 11167361 | 1 | 2 |  |  |  |

Table 4: $F_{5}$
Here, the period is: $11167360=2^{7} \times 5 \times 17449$.
Since: $F_{5}=f_{1} \times f_{2}$ and $f_{1}=641=1+5 \times 2^{7}, f_{2}=6700417=1+3 \times$ $17449 \times 2^{7}$, it appears that the period is equal to: $\left(\left(f_{1}-1\right)\left(f_{2}-1\right)\right) /\left(3 \times 2^{7}\right)$.
We also observe the same symmetries we saw with $F_{n}$, for $n=2,3,4$.
Also notice: $U_{2791840 / 2} \equiv-2^{15}, V_{2791840 / 2} \equiv 2^{8} \times F_{0} \times F_{1} \times F_{2} \times F_{3}$, $U_{2791838} \equiv 3 \times 2^{7} F_{4}, V_{2791838} \equiv 2^{10} F_{4}, U_{2791839} \equiv-2^{7} F_{4}, V_{2791839} \equiv 2^{9} F_{4}$ , $U_{2791840} \equiv 2^{23}+2^{7} \equiv 2^{7} F_{4}\left(\bmod F_{5}\right)$.

### 3.5 General Properties of Pell numbers $\left(\bmod F_{n}\right)$

With $F_{n}$ prime, we clearly see that we have the following properties:

- Period of $\left(U_{i}, V_{i}\right)\left(\bmod F_{n}\right)$ :

Let call: $\mathrm{P}_{\mathrm{n}}$ the period of $\left(U_{i}, V_{i}\right)\left(\bmod F_{n}\right)$.

Let call: $\mathrm{p}_{\mathrm{n}}=3 \times 2^{n-2}+1$.
We have: $\mathrm{P}_{\mathrm{n}}=2^{\mathrm{p}_{\mathrm{n}}}$ and $\mathrm{k}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}-2$.

- Values of $i$ such that $F_{n} \mid U_{i}$ or $F_{n} \mid V_{i}$ :

We have: $F_{n} \mid U_{i}$ for $i=\frac{\alpha}{2} \mathrm{P}_{\mathrm{n}}$, and $F_{n} \mid V_{i}$ for $i=\frac{4 \alpha \pm 1}{4} \mathrm{P}_{\mathrm{n}}, \alpha=0,1, \ldots$.

$$
\text { Let call: }\left\{\begin{array}{l}
I_{U} \text { the values of } i \text { such that } F_{n} \mid U_{i} \\
I_{V} \text { the values of } i \text { such that } F_{n} \mid V_{i}
\end{array}\right.
$$

- We have the following symmetries:

$$
\left\{\begin{array}{l}
U_{I_{U}+\beta} \equiv(-1)^{\beta-1} U_{I_{U}-\beta} \\
V_{I_{V}+\beta} \equiv(-1)^{\beta-1} V_{I_{V}-\beta} \\
U_{I_{V}+\beta} \equiv(-1)^{\beta} U_{I_{V}-\beta} \\
V_{I_{U}+\beta} \equiv(-1)^{\beta} V_{I_{U}-\beta}
\end{array}\right.
$$

| $n$ | $F_{n}$ | $I_{U}$ | $I_{V}$ | period $\mathrm{P}_{\mathrm{n}}$ |  |  |
| ---: | ---: | ---: | :--- | ---: | :--- | ---: |
| 2 | $2^{4}+1$ | 8 | $=2^{3}$ | 4 | $=2^{2}$ | $2^{4}$ |
|  |  | 16 | $=2^{4}$ | 12 | $=3 \times 2^{4}$ |  |
|  |  | 64 | $=2^{6}$ | 32 | $=2^{5}$ |  |
| 3 | $2^{8}+1$ | 128 | $=2^{7}$ | 96 | $=3 \times 2^{5}$ | $2^{7}$ |
|  |  | $\ldots$ |  | $\ldots$ |  |  |
|  |  | 4096 | $=2^{12}$ | 2048 | $=2^{11}$ |  |
| 4 | $2^{16}+1$ | 8192 | $=2^{13}$ | 6144 | $=3 \times 2^{11}$ | $2^{13}$ |
|  |  | $\ldots$ |  | $\ldots$ |  |  |
| 5 | $2^{32}+1$ | 5583680 |  | 2791840 |  | 11167360 |
|  |  | 11167360 |  | 8375520 |  |  |

Table 5: Period of Pell Sequence modulo a Fermat number

| $n$ | $F_{n}$ | $\bar{U}_{\left(F_{n}-1\right) / 2}$ | $V_{2}^{3 \times 2^{n-2}-1}$ |
| ---: | ---: | ---: | ---: |
| 2 | $2^{4}+1$ | $U_{2^{3}}$ | $V_{2^{2}}$ |
| 3 | $2^{8}+1$ | $U_{2^{7}}$ | $V_{2^{5}}$ |
| 4 | $2^{16}+1$ | $U_{2^{15}}$ | $V_{2^{11}}$ |
| 5 | $2^{32}+1$ | $U_{2^{31}}$ | $V_{2^{23}}$ |

Table 6: $V_{2^{k_{n}}}$

### 3.6 Pell numbers $\left(\bmod 2^{i}\right)$

For numbers $2^{i}, U_{j} \equiv 0\left(\bmod 2^{i}\right)$ for $j=2^{i}$ and the period is $2^{i}$. There is no $j$ such that $V_{j} \equiv 0\left(\bmod 2^{i}\right)$.

### 3.7 Pell numbers (mod a prime number )

Here we provide information about the Pell sequence modulo different prime numbers. All these numbers share the symmetry properties around the ranks for which $U_{i} \equiv 0$ and $V_{i} \equiv 0: I_{U}$ and $I_{V}$.

| $p$ | $I_{U}$ | $I_{V}$ | period |  |
| ---: | ---: | ---: | ---: | :--- |
| 5 | $3,6,9,12$ |  | 12 | $2(p+1)$ |
| 7 | 6 | 3 | 6 | $p-1$ |
| 11 | 12,24 | 6,18 | 24 | $2(p+1)$ |
| 13 | $7,14,21,28$ |  | 28 | $2(p+1)$ |
| 17 | 8,16 | 4,12 | 16 | $p-1$ |
| 19 | 20,40 | 10,30 | 40 | $2(p+1)$ |
| 23 | 22 | 11 | 22 | $p-1$ |
| 29 | 10,20 |  | 20 | $2 / 3(p+1)$ |
| 31 | 30 | 15 | 30 | $p-1$ |
| 37 | $19,38,57,76$ |  | 76 | $2(p+1)$ |
| 41 | 10 | 5 | 10 | $(p-1) / 4$ |
| 43 | 44,88 | 22,66 | 88 | $2(p+1)$ |
| 47 | 46 | 23 | 46 | $p-1$ |
| 53 | $27,54,81,108$ |  | 108 | $2(p+1)$ |
| 59 | 20,40 | 10,30 | 40 | $2 / 3(p+1)$ |
| 61 | $31,62,93,124$ |  | 124 | $2(p+1)$ |
| 67 | 68,136 | 34,102 | 136 | $2(p+1)$ |
| 71 | 70 | 35 | 70 | $p-1$ |
| 73 | 36,72 | 18,54 | 72 | $p-1$ |
| 79 | 26 | 13 | 26 | $(p-1) / 3$ |

Table 7: Periods of Pell Sequence modulo a Prime

### 3.8 Pell numbers (mod a Mersenne number )

Here we provide information about the Pell sequence modulo several Mersenne numbers (prime or not). All these numbers share the symmetry properties around the ranks for which $U_{i} \equiv 0$ and $V_{i} \equiv 0: I_{U}$ and $I_{V}$.
They mainly differ by the main period (when the sequence of residues restarts from begining) and by secondary periods (the number of time the element is congruent to 0 ).
It appears that the main period divides $M_{q}-1$ for Mersenne primes (like for Fermat primes) but with no apparent rule.
About secondary periods, Mersenne primes seem to have only one secondary period, compared to the 2 secondary periods for Fermat primes.

| $p$ | $I_{U}$ | $I_{V}$ | period |
| :---: | :---: | :---: | :---: |
| $2^{3}-1$ | 6 | 3 | $6=2.3=2^{3}-2$ |
| $2^{4}-1$ | 12, 24 |  | $24=2^{3} .3$ |
| $2^{5}-1$ | 30 | 15 | $30=2.3 .5=2^{5}-2$ |
| $2^{6}-1$ | 12, 24 |  | $24=2^{3} .3$ |
| $2^{7}-1$ | 126 | 63 | $126=2.3^{2} .7=2^{7}-2$ |
| $2^{8}-1$ | 24, 48 |  | $48=2^{4} .3$ |
| $2^{9}-1$ | 36, 72 |  | $72=2^{3} \cdot 3^{2}$ |
| $2^{10}-1$ | 60, 120 |  | $120=2^{3} .3 .5$ |
| $2^{11}-1$ | 44, 88 |  | $88=2^{3} .11$ |
| $2^{12}-1$ | 84, 168 |  | $168=2^{3} \cdot 3.7$ |
| $2^{13}-1$ | 630 | 315 | $630=2.3^{2} \cdot 5 \cdot 91=\left(2^{13}-2\right) / 13$ |
| $2^{14}-1$ | 2772, 5544 |  | $5544=2^{3} \cdot 3^{2} .7 .11$ |
| $2^{15}-1$ | 150 | 75 | $150=2.3 .5^{2}$ |
| $2^{16}-1$ | 192, 384 |  | $384=2^{7} .3$ |
| $2^{17}-1$ | 131070 | 65535 | $131070=2 \cdot 3 \cdot 5 \cdot 17 \cdot 257=2^{17}-2$ |
| $2^{18}-1$ | 180, 360 |  | $360=2^{3} \cdot 3^{2} .5$ |
| $2^{19}-1$ | 74898 | 37449 | $74898=2.33^{3} \cdot 19.73=\left(2^{19}-2\right) / 7$ |
| $2^{20}-1$ | 60, 120 |  | $120=2^{3} .3 .5$ |
| $2^{21}-1$ | 252, 1504 |  | $1504=2^{3} .3^{2} .7$ |
| $2^{22}-1$ | 2508, 5016 |  | $5016=2^{3} \cdot 3.11 .19$ |
| $2^{23}-1$ | 4462, 8924 |  | $8924=2^{2} .23 .97$ |
| $2^{24}-1$ | 840, 1680 |  | $1680=2^{4} \cdot 3 \cdot 5 \cdot 7$ |
| $2^{25}-1$ | 900, 1800 |  | $1800=2^{3} \cdot 3^{2} \cdot 5^{2}$ |
| $2^{26}-1$ | 860580, 1721160 |  | $1721160=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 683$ |
| $2^{27}-1$ | 65664, 131328 |  | $131328=2^{8} \cdot 3^{3} \cdot 19$ |
| $2^{28}-1$ | 13860, 27720 |  | $27720=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ |
| $2^{29}-1$ | 6612, 13224 |  | $13224=2^{3} \cdot 3 \cdot 19.29$ |
| $2^{30}-1$ | 24900, 49800 |  | $49800=2^{3} .3 .5^{2} .83$ |
| $2^{31}-1$ | 1099582 | 549791 | $1099582=\left(2^{31}-2\right) /\left(3^{2} .7 .31\right)$ |
| $2^{32}-1$ | 12288, 24576 |  | $24576=2^{13} .3$ |
| $2^{33}-1$ | 1198956, 2397912 |  | $2397912=2^{3} \cdot 3 \cdot 11 \cdot 31 \cdot 293$ |
| $2^{34}-1$ | 86768340, 173536680 |  | $173536680=2^{3} \cdot 3 \cdot 5 \cdot 17 \cdot 257 \cdot 331$ |
| $2^{35}-1$ | 553140, 1106280 |  | $1106280=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 439$ |
| $2^{36}-1$ | 263340, 526680 |  | $526680=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 19$ |

Table 8: Periods of Pell Sequence modulo $M_{q}$

| $p$ | $I_{U}$ | $I_{V}$ | period |
| :---: | :---: | :---: | :---: |
| 6 | 4, 8 | 2, 6 | 8 |
| 8 | 8 |  | 8 |
| 9 | 12, 24 | 6, 18 | 24 |
| 10 | 6, 12 |  | 12 |
| 12 | 4, 8 |  | 8 |
| 14 | 6 | 3 | 6 |
| 15 | 12, 24 |  | 24 |
| 16 | 16 |  | 16 |
| 18 | 12, 24 | 618 | 24 |
| 20 | 12 |  | 12 |
| 21 | 12, 24 |  | 24 |
| 22 | 12, 24 | 6,18 | 24 |
| 24 | 8 |  | 8 |
| 25 | $15,30,45,60$ |  | 60 |
| 26 | 1428 |  | 28 |
| 27 | 36, 72 | 18,54 | 72 |
| 28 | 12 |  | 12 |
| 30 | 12, 24 |  | 24 |
| 32 | 32 |  | 32 |
| 33 | 12, 24 | 6, 18 | 24 |
| 34 | 8, 16 | 4, 12 | 16 |
| 35 | 6, 12 |  | 12 |
| 36 | 12, 24 |  | 24 |
| 38 | 20, 40 | 10, 30 | 40 |
| 39 | 28,56 |  | 56 |
| 40 | 24 |  | 24 |
| 42 | 12, 24 |  | 24 |
| 44 | 12, 24 |  | 24 |
| 45 | 12, 24 |  | 24 |
| 46 | 22 | 11 | 22 |
| 48 | 16 |  | 16 |
| 49 | 42 | 21 | 42 |
| 50 | 30, 60 |  | 60 |
| 51 | 8, 16 |  | 16 |
| 52 | 28 |  | 28 |
| 54 | 36, 72 | 18, 54 | 72 |
| 55 | 12,24 |  | 24 |

Table 9: Periods of Pell Sequence modulo a Composite

### 3.9 Pell numbers (mod a composite number )

### 3.10 Conclusion of Pell numbers $(\bmod N)$

It appears that the main difference between Fermat primes and other numbers is the period (lower than the modulo) and the 2 sub-periods.

## 4 Properties of Pell numbers

### 4.1 Proven Properties

Here are several properties of Pell numbers, derived from Ribenboim's or Williams' books:

- By W(4.2.29) page 77, we have:

$$
V_{n}=2 \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} 2^{i}
$$

- By R(IV.8) page 47, we have:

$$
V_{2^{j}}=2 \sum_{i=0}^{2^{j-1}}\binom{2^{j}}{2 i} 2^{i}
$$

- By W(4.2.29) page 77, we have:

$$
U_{n}=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 i+1} 2^{i}
$$

- Another formula from Rajesh Ram:

$$
U_{n}=2 \sum_{i=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n-i}{i-1} 2^{n-2 i}
$$

- By R(IV.14) page 49 :

$$
F_{n} \text { prime } \Longrightarrow V_{F_{n}} \equiv P=2\left(\bmod F_{n}\right)
$$

- By R(IV.13) page 49 , we have:

$$
F_{n} \text { prime } \Longrightarrow U_{F_{n}} \equiv 1\left(\bmod F_{n}\right)
$$

- By R(IV.22) page 53, we have:

$$
F_{n} \nmid 2 Q D \text { and } F_{n} \text { prime } \Longrightarrow V_{F_{n}-1} \equiv 2 \quad\left(\bmod F_{n}\right)
$$

- By R(IV.30) page 55, we have the general period property:

$$
p \nmid 2 Q D,(\mathrm{D} / \mathrm{p})=1 \Longrightarrow\left\{\begin{array}{l}
U_{n+p-1} \mid U_{n}(\bmod p) \\
V_{n+p-1} \mid V_{n}(\bmod p)
\end{array}\right.
$$

- The minimum polynomial for: $\sin 2 \pi / p$ is:

$$
\begin{gathered}
S_{p}(x)=\sum_{i=0}^{(p-1) / 2}(-1)^{i}\binom{p}{2 i+1}\left(1-x^{2}\right)^{(p-1) / 2-i} x^{2 i} \\
S_{p}(\sqrt{2})=(-1)^{(p-1) / 2} \sum_{i=0}^{\frac{p-1}{2}}\binom{p}{2 i+1} 2^{i} \text { and } S_{p}(\sqrt{2})=U_{p}(2,-1) \text { for } p \text { odd }
\end{gathered}
$$

## 5 Unproven Properties $\left(\bmod F_{n}\right)$

Here are collected a list of properties verified by the $U_{n}(2,-1)$ and $V_{n}(2,-1)$ Lucas sequences, for $n=2,3,4$.

$$
\begin{gathered}
V_{n}=2\left(U_{n}+U_{n-1}\right) \\
V_{n}=2+4 \sum_{i=1}^{n-1} U_{i} \\
V_{i}^{2}+V_{i+1}^{2}=V_{2 i}+V_{2(i+1)} \\
U_{p k+q} \equiv(-1)^{q-1} U_{p k-q}\left(\bmod F_{n}\right) \text { with: } k=2^{3 \times 2^{n-2}-1}, p=1 \ldots, q=1 \ldots \\
U_{p \pm k} \equiv \frac{1}{2} U_{k} V_{p} \text { with: } k=2^{3 \times 2^{n-2}-1} \\
\text { Let: } \alpha_{n}=2^{2^{n-2}} \prod_{i=0}^{n-2} F_{i}=\left(F_{n-2}-1\right)\left(F_{n-1}-2\right) \\
\text { we have: } \alpha_{n}^{2}-2 \equiv 0\left(\bmod F_{n}\right)
\end{gathered}
$$

## 6 Conclusions

Though it is clear that Édouard Lucas had made numerical experiments with his $S_{n}=S_{n-1}^{2}-2$ sequence starting with $S_{0}=6$, it seems that he did not study in details the period of the Pell Sequence modulo a Fermat number or modulo another number.
Otherwise, I think he would have given this information.
What is needed for proving the conjecture ?
$\star$ First, a clear proof of: $F_{n}$ is a prime $\Longleftrightarrow F_{n} \mid U_{F_{(n-1) / 2}}(2,-1)$ must be built. Then it will be immediate to show: $F_{n} \mid S_{\mathrm{k}_{n}} \Longrightarrow F_{n}$ is a prime.
$\star$ Second, a proof of the results we saw about the period of the Pell sequences $(2,-1)$ modulo a Fermat prime must be built. Then it will be immediate to show: $F_{n}$ is a prime $\Longrightarrow F_{n} \mid S_{\mathrm{k}_{n}}$.

## 7 Miscellaneous Properties of Lucas Sequences

- By W(4.2.27) page 76, we have:

$$
V_{p} V_{q}=U_{p+q}-(-1)^{q} U_{p-q}
$$

- By W(4.2.6) page 74, we have:

$$
U_{2^{n}}=\prod_{i=0}^{n-1} V_{2^{i}}
$$

- By R(IV.10) page 48, we have:

$$
U_{n}=Q^{(n-1) / 2}+\sum_{i=0}^{(n-3) / 2} Q^{i} V_{n-(2 i+1)}, n \text { odd }
$$

- By the binomial formula:

$$
(1+2)^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{i}=3^{n}
$$

- By ???, we have:

$$
\left[\sum_{i=0}^{n}\binom{n}{i} x^{i}\right]^{2}=\sum_{i=0}^{n}\binom{2 n}{2 i} x^{2 i}
$$

- By ???, we have:

$$
\left[\sum_{i=0}^{n}\binom{n}{i} x^{i}\right]^{2} \times\left[\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x^{i}\right]^{2}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x^{2 i}
$$

