Pell Numbers Modulo a prime $p \equiv 1 \pmod{8}$

Tony Reix (Tony.Reix@laposte.net) 2005, 5th of April - v0.3

This paper presents a numerical study of the Pell numbers modulo a prime number p such that: $p \equiv 1 \pmod{8}$.

1 Pell numbers

Pell numbers $U_n(2, -1)$ and $V_n(2, -1)$ are defined by the Lucas sequences where (P, Q) = (2, -1):

$$U_n(P,Q) = PU_{n-1} - QU_{n-2}$$
, with: $U_0(P,Q) = 0$ and: $U_1(P,Q) = 1$
 $V_n(P,Q) = PV_{n-1} - QV_{n-2}$, with: $V_0(P,Q) = 2$ and: $V_1(P,Q) = P = 2$

We will use: U_n and V_n rather than: $U_n(2, -1)$ and $V_n(2, -1)$ hereafter.

2 Already known Properties

2.1 General Properties

First, it is well known that:

If p is prime and $p \equiv 1 \pmod{8}$ then:

$$p = a^2 + b^2$$
, with (a, b) unic.
 $p = x^2 + 2y^2$, with (x, y) unic.

2.2 Properties of Pell numbers

It has already been proven that:

If p is prime and $p \equiv 1 \pmod{8}$ then:

$$\begin{array}{c} p \mid U_{\underbrace{p-1}{2}} \\ 4 \mid y \iff p \mid U_{\underbrace{p-1}{4}} \end{array}$$

3 Conjectured Properties

The following conjectures are based on a numerical study of all primes p such that: $p \equiv 1 \pmod{8}$ lower than 4,000,000.

3.1 Definitions

We define:

$$\begin{split} \eta_U & \text{as the greatest } k \text{ such that: } p \mid U_{(p-1)/2^k} \\ \eta_V & \text{as the greatest } k \text{ such that: } p \mid V_{(p-1)/2^k} \\ \eta_p & \text{as the greatest } k \text{ such that: } 2^k \mid p-1 \\ \eta_y & \text{as the greatest } k \text{ such that: } 2^k \mid y \\ \pi & \text{as the period of } \left((U_n \mod p) \text{ and } (V_n \mod p) \right) \\ U_{n+\pi} &\equiv U_n \pmod{p} \text{ and } V_{n+\pi} \equiv V_n \pmod{p} \\ \eta_\pi & \text{as the greatest } k \text{ such that: } \pi \times 2^k = p-1. \end{split}$$

Since $D = P^2 - 4Q = 8$ and $(D_p) = 1$, it is well known that $\pi \mid p - 1$. But finding the exact value of π is a difficult task.

Note that η_U , η_p , and η_y always exist, though η_V may not exist. Hereafter, $\eta_p \ge 3$.

3.2 Divisibility Properties

$$\begin{aligned} REVOIR \ \eta_U &= 1 \text{ or } 2 \implies \eta_V = \eta_U + 1, \text{ and } \eta_U \neq \eta_p \qquad (D.I) \\ \eta_U &\geq 3 \implies \eta_y \geq 3 \quad (\text{ meaning: } p \mid U_{(p-1)/8} \implies 8 \mid y) \qquad (D.II) \\ & \nexists \eta_V \iff \eta_U = \eta_p \qquad (D.III) \\ & \nexists \eta_V \implies \eta_\pi = \eta_U - 2 \qquad (D.IV) \\ & \exists \eta_V \implies (\eta_\pi = \eta_U \text{ or } \eta_\pi = \eta_U - 1) \qquad (D.V) \\ & \eta_U < \eta_p \iff \eta_V = \eta_U + 1 \qquad (D.VI) \end{aligned}$$

3.3 Counting Properties

Hereafter, $\sharp(p / \mathfrak{P})$ is the number of primes p that verify \mathfrak{P} and such that η_p is equal to a fixed value.

$$\begin{aligned} & \#(p \mid \eta_U = 1) = \#(p \mid \eta_U \ge 1) \\ & \#(p \mid \eta_U = k) = 2 \times \#(p \mid \eta_U = k + 1) , \text{ for: } k = 1..\eta_p - 2 \\ & \#(p \mid \eta_U = \eta_p) = \#(p \mid \eta_U = 1)/2^{\eta_p - 2} = \#(p \mid \eta_U = \eta_p - 1) \end{aligned}$$