Pell Numbers Modulo a prime $p \equiv 1(\bmod 8)$

Tony Reix (Tony.Reix@laposte.net) 2005, 5th of April - v0.3

This paper presents a numerical study of the Pell numbers modulo a prime number p such that: $p \equiv 1(\bmod 8)$.

1 Pell numbers

Pell numbers $U_{n}(2,-1)$ and $V_{n}(2,-1)$ are defined by the Lucas sequences where $(P, Q)=(2,-1)$:

$$
\begin{aligned}
& U_{n}(P, Q)=P U_{n-1}-Q U_{n-2}, \text { with: } U_{0}(P, Q)=0 \text { and: } U_{1}(P, Q)=1 \\
& V_{n}(P, Q)=P V_{n-1}-Q V_{n-2}, \text { with: } V_{0}(P, Q)=2 \text { and: } V_{1}(P, Q)=P=2
\end{aligned}
$$

We will use: U_{n} and V_{n} rather than: $U_{n}(2,-1)$ and $V_{n}(2,-1)$ hereafter.

2 Already known Properties

2.1 General Properties

First, it is well known that:
If p is prime and $p \equiv 1(\bmod 8)$ then:

$$
\begin{aligned}
& p=a^{2}+b^{2}, \text { with }(a, b) \text { unic } . \\
& p=x^{2}+2 y^{2}, \text { with }(x, y) \text { unic } .
\end{aligned}
$$

2.2 Properties of Pell numbers

It has already been proven that:
If p is prime and $p \equiv 1(\bmod 8)$ then:

$$
\begin{gathered}
p \left\lvert\, U_{\frac{p-1}{2}}\right. \\
4|y \Longleftrightarrow p| U_{\frac{p-1}{4}}
\end{gathered}
$$

3 Conjectured Properties

The following conjectures are based on a numerical study of all primes p such that: $p \equiv 1(\bmod 8)$ lower than $4,000,000$.

3.1 Definitions

We define:
η_{U} as the greatest k such that: $p \mid U_{(p-1) / 2^{k}}$.
η_{V} as the greatest k such that: $p \mid V_{(p-1) / 2^{k}}$.
η_{p} as the greatest k such that: $2^{k} \mid p-1$.
η_{y} as the greatest k such that: $2^{k} \mid y$.
π as the period of $\left(\left(U_{n} \bmod p\right)\right.$ and $\left.\left(V_{n} \bmod p\right)\right)$.
$U_{n+\pi} \equiv U_{n}(\bmod p)$ and $V_{n+\pi} \equiv V_{n}(\bmod p)$
η_{π} as the greatest k such that: $\pi \times 2^{k}=p-1$.
Since $D=P^{2}-4 Q=8$ and $(\mathrm{D} / \mathrm{p})=1$, it is well known that $\pi \mid p-1$. But finding the exact value of π is a difficult task.

Note that η_{U}, η_{p}, and η_{y} always exist, though η_{V} may not exist. Hereafter, $\eta_{p} \geq 3$.

3.2 Divisibility Properties

$$
\begin{array}{rlr}
\text { REVOIR } \eta_{U}=1 \text { or } 2 \Longrightarrow \eta_{V}=\eta_{U}+1, \quad \text { and } \eta_{U} \neq \eta_{p} \\
\eta_{U} \geq 3 \Longrightarrow \eta_{y} \geq 3 \quad\left(\text { meaning: } p\left|U_{(p-1) / 8} \Longrightarrow 8\right| y\right) \tag{D.II}\\
\nexists \eta_{V} \Longleftrightarrow \eta_{U}=\eta_{p} & (D . I I I) \\
\nexists \eta_{V} \Longrightarrow \eta_{\pi}=\eta_{U}-2 & (D . I V) \\
\exists \eta_{V} \Longrightarrow\left(\eta_{\pi}=\eta_{U} \text { or } \eta_{\pi}=\eta_{U}-1\right) & (D . V) \\
\eta_{U}<\eta_{p} \Longleftrightarrow \eta_{V}=\eta_{U}+1 & (D . V I)
\end{array}
$$

3.3 Counting Properties

Hereafter, $\sharp(p / \mathfrak{P})$ is the number of primes p that verify \mathfrak{P} and such that η_{p} is equal to a fixed value.

$$
\begin{gathered}
\sharp\left(p / \eta_{U}=1\right)=\sharp\left(p / \eta_{U} \geq 1\right) \\
\sharp\left(p / \eta_{U}=k\right)=2 \times \sharp\left(p / \eta_{U}=k+1\right), \text { for: } k=1 . . \eta_{p}-2 \\
\sharp\left(p / \eta_{U}=\eta_{p}\right)=\sharp\left(p / \eta_{U}=1\right) / 2^{\eta_{p}-2}=\sharp\left(p / \eta_{U}=\eta_{p}-1\right)
\end{gathered}
$$

