# A LLT-like test for proving the primality of Fermat numbers. 

Tony Reix (Tony.Reix@laposte.net)<br>First version: 2004, 24th of September<br>Updated: 2005, 19th of October<br>Revised (Inkeri): 2009, 28th of December

In 1876, Édouard Lucas discovered a method for proving that a number is prime or composite without searching its factors. His method was based on the properties of the Lucas Sequences. He first used his method for Mersenne numbers and proved that $2^{127}-1$ is a prime. In 1930, Derrick Lehmer provided a complete and clean proof. This test of primality for Mersenne numbers is now known as: Lucas-Lehmer Test (LLT).

Few people know that Lucas also used his method for proving that a Fermat number is prime or composite, still with an unclear proof. He used his method for proving that $2^{2^{6}}+1$ is composite. Lehmer did not provide a proof of Lucas' method for Fermat numbers.

This paper provides a proof of a LLT-like test for Fermat numbers, based on the properties of Lucas Sequences and based on the method of Lehmer. The seed (the starting value $S_{0}$ of the $\left\{S_{i}\right\}$ sequence) used here is 5 , though Lucas used 6. In 1960, Kustaa Inkeri provided a full proof with seed 8.
Primality tests for special numbers are classified into $N-1$ and $N+1$ categories, meaning that the numbers $N-1$ or $N+1$ can be completely or partially factored. Since many books talk about the LLT only in the $N+1$ chapter for Mersenne numbers $N=2^{q}-1$, it seemed useful to remind that the LLT can also be used for numbers $N$ such that $N-1$ is easy to factor, like Fermat numbers $N=2^{2^{n}}+1$, by providing a proof àla Lehmer.

## Theorem 1

$F_{n}=2^{2^{n}}+1(n \geqslant 1)$ is a prime if and only if it divides $S_{2^{n-2}}$, where $S_{0}=5$ and $S_{i}=S_{i-1}^{2}-2$ for $i=1,2,3, \ldots 2^{n}-2$.

The proof is based on chapters 4 (The Lucas Functions) and 8.4 (The Lehmer Functions) of the book "Édouard Lucas and Primality Testing" of H. C. Williams (A Wiley-Interscience publication, 1998).
Chapter 1 explains how the $(P, Q)$ parameters have been found. Then Chapter 2 provides the Lehmer theorems used for the proof. Then Chapter 3 and 4 provide the proof for: $F_{n}$ prime $\Longrightarrow F_{n} \mid S_{2^{n}-2}$ and the converse, proving theorem 1. Chapter 5 provides numerical examples. The appendix in Chapter 6 provides first values of $U_{n}$ and $V_{n}$ plus some properties.
AMS Classification: 11A51 (Primality), 11B39 (Lucas Sequences), 11-03 (Historical), 01A55 (19th century), 01A60 (20th century).

## 1 Lucas Sequence with $P=\sqrt{R}$

Let $S_{0}=5$ and $S_{i}=S_{i-1}^{2}-2 . S_{1}=23, S_{2}=527=17 \times 31, \ldots$

$$
\text { It has been checked that: } \begin{cases}S_{2^{n}-2} \equiv 0 & \left(\bmod F_{n}\right) \\ S_{2^{n}-2} \neq 0 & \text { for } n=1 \ldots 4 \\ \left(\bmod F_{n}\right) & \text { for } n=5 \ldots 14\end{cases}
$$

Here after, we search a Lucas Sequence $\left(U_{m}\right)_{m \geqslant 0}$ and its companion $\left(V_{m}\right)_{m \geqslant 0}$ with $(P, Q)$ that fit with the values of the $S_{i}$ sequence.

We define the Lucas Sequence $V_{m}$ such that:

$$
\begin{gathered}
V_{2^{k+1}=}=S_{k} \\
\text { Thus we have: }\left\{\begin{array}{lll}
V_{2}= & S_{0}= & 5 \\
V_{4}= & S_{1}= & 23 \\
V_{8}= & S_{2}= & 527
\end{array}\right.
\end{gathered}
$$

If (4.2.7) page $74\left(V_{2 n}=V_{n}^{2}-2 Q^{n}\right)$ applies, we have: $\left\{\begin{array}{l}V_{4}=V_{2}^{2}-2 Q^{2} \\ V_{8}=V_{4}^{2}-2 Q^{4}\end{array}\right.$ and thus: $Q=\sqrt[2]{\frac{V_{2}^{2}-V_{4}}{2}}=\sqrt[4]{\frac{V_{4}^{2}-V_{8}}{2}}= \pm 1$.
With (4.1.3) page $70\left(V_{n+1}=P V_{n}-Q V_{n-1}\right)$, and with:

$$
\left\{\begin{array}{l}
V_{0}=2 \\
V_{1}=P \\
V_{2}=P V_{1}-Q V_{0}=P^{2}-2 Q
\end{array}\right.
$$

we have: $P=\sqrt{V_{2}+2 Q}=\sqrt{7}$ or $\sqrt{3}$.
In the following we consider: $(P, Q)=(\sqrt{7}, 1)$.
As explained by Williams page 196, "all of the identity relations [Lucas functions] given in (4.2) continue to hold, as these are true quite without regard as to whether $P, Q$ are integers".
So, like Lehmer, we define $P=\sqrt{R}$ such that $R=7$ and $Q=1$ are coprime integers and we define (Property (8.4.1) page 196):

$$
\bar{V}_{n}=\left\{\begin{array}{ll}
V_{n} & \text { when } 2 \mid n \\
V_{n} / \sqrt{R} & \text { when } 2 \nmid n
\end{array} \quad \bar{U}_{n}= \begin{cases}U_{n} / \sqrt{R} & \text { when } 2 \mid n \\
U_{n} & \text { when } 2 \nmid n\end{cases}\right.
$$

in such a way that $\bar{V}_{n}$ and $\bar{U}_{n}$ are always integers.
Tables 1 to 5 give values of $U_{i}, V_{i}, \bar{U}_{i}\left(\bmod F_{n}\right), \bar{V}_{i}\left(\bmod F_{n}\right)$, with $(P, Q)=(\sqrt{7}, 1)$, for $n=1,2,3,4$.

## 2 Lehmer theorems

Like Lehmer, let define the symbols (where ( $\mathrm{a} / \mathrm{b}$ ) is the Legendre symbol):

$$
\left\{\begin{array}{l}
\varepsilon=\varepsilon(p)=(\mathrm{D} / \mathrm{p}) \\
\sigma=\sigma(p)=(\mathrm{R} / \mathrm{p}) \\
\tau=\tau(p)=(\mathrm{Q} / \mathrm{p})
\end{array}\right.
$$

The 2 following formulas (from page 77) will help proving properties:

$$
\begin{align*}
2^{m-1} U_{m n} & =\sum_{i=0}^{\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 i+1} D^{i} U_{n}^{2 i+1} V_{n}^{m-(2 i+1)}  \tag{4.2.28}\\
2^{m-1} V_{m n} & =\sum_{i=0}^{\left\lfloor\frac{m}{2}\right\rfloor}\binom{m}{2 i} D^{i} U_{n}^{2 i} V_{n}^{m-2 i}
\end{align*}
$$

Property (8.4.2) page 196 :
If $p$ is an odd prime and $p \nmid Q$, then: $\begin{cases}\bar{U}_{p} \equiv(\mathrm{D} / \mathrm{p}) & (\bmod p) \\ \bar{V}_{p} \equiv(\mathrm{R} / \mathrm{p}) & (\bmod p)\end{cases}$

## Proof:

Since $p$ is a prime, and by Fermat little theorem, we have: $2^{p-1} \equiv 1(\bmod p)$.

- By (4.2.28), with $m=p$ and $n=1$, since $U_{1}=1$ and $V_{1}=P$, we have:

$$
\begin{gathered}
2^{p-1} U_{p}=\sum_{i=0}^{\frac{p-1}{2}}\binom{p}{2 i+1} D^{i} U_{1}^{2 i+1} V_{1}^{p-(2 i+1)} \\
2^{p-1} U_{p}=\binom{p}{1} P^{p-1}+\binom{p}{3} D P^{p-3}+\ldots+\binom{p}{p} D^{\frac{p-1}{2}} P^{0}
\end{gathered}
$$

Since $\binom{p}{i} \equiv 0(\bmod p)$ when $0<i<p$ and $\binom{p}{p}=1$, we have:

$$
U_{p}=\bar{U}_{p} \equiv D^{\frac{p-1}{2}} \equiv(\mathrm{D} / \mathrm{p}) \quad(\bmod p)
$$

- By (4.2.29), with $m=p$ and $n=1$, since $U_{1}=1$ and $V_{1}=P$, we have:

$$
\begin{gathered}
2^{p-1} V_{p}=\sum_{i=0}^{\frac{p-1}{2}}\binom{p}{2 i} D^{i} U_{1}^{2 i} V_{1}^{p-2 i} \\
2^{p-1} V_{p}=\binom{p}{0} P^{p}+\binom{p}{2} D P^{p-2}+\ldots+\binom{p}{p-1} D^{\frac{p-1}{2}} P
\end{gathered}
$$

Since $\binom{p}{0}=1$, and $\binom{p}{i} \equiv 0(\bmod p)$ when $0<i<p$, we have:

$$
V_{p} \equiv P^{p} \quad \text { and } \quad \bar{V}_{p} \equiv P^{p-1} \equiv R^{\frac{p-1}{2}} \equiv(\mathrm{R} / \mathrm{p}) \quad(\bmod p)
$$

Property (8.4.3) page 197 :

$$
p \text { odd prime and } p \nmid Q \Longrightarrow p \mid \bar{U}_{p-\sigma \varepsilon}
$$

## Proof

By (4.2.28) with $n=1, V_{1}=P$, since $p$ is a prime and $(R, Q)=1$, we have:

- With: $m=p+1$

$$
\begin{gathered}
2^{p} U_{p+1}=\sum_{i=0}^{\frac{p+1}{2}}\binom{p+1}{2 i+1} D^{i} P^{p-2 i} \\
2^{p} U_{p+1}=\binom{p+1}{1} P^{p}+\binom{p+1}{3} D P^{p-2}+\ldots+\binom{p+1}{p} D^{\frac{p-1}{2}} P+\binom{p+1}{p+2} D^{\frac{p+1}{2}} P^{-1} \\
2^{p} U_{p+1}=(p+1) P^{p}+(p+1) p[\ldots]+(p+1) D^{\frac{p-1}{2}} P+0 D^{\frac{p+1}{2}} P^{-1} \\
2^{p} U_{p+1}=P^{p}+D^{\frac{p-1}{2}} P+p[\ldots]=P\left[\left(P^{2}\right)^{\frac{p-1}{2}}+D^{\frac{p-1}{2}}\right]+p[\ldots] \\
\frac{2^{p} U_{p+1}}{P}=2^{p} \bar{U}_{p+1} \equiv R^{\frac{p-1}{2}}+D^{\frac{p-1}{2}} \equiv(\mathrm{R} / \mathrm{p})+(\mathrm{D} / \mathrm{p})=\sigma(p)+\varepsilon(p)(\bmod p) \\
\text { Thus, if } \sigma \varepsilon=\sigma(p) \times \varepsilon(p)=-1, \text { then } p \mid \bar{U}_{p+1}=\bar{U}_{p-\sigma \epsilon} .
\end{gathered}
$$

- With: $m=p-1$ :

$$
\begin{gathered}
2^{p-2} U_{p-1}=\sum_{i=0}^{\frac{p-1}{2}}\binom{p-1}{2 i+1} D^{i} P^{p-2(i+1)} \\
2^{p-2} U_{p-1}=\binom{p-1}{1} P^{p-2}+\binom{p-1}{3} D P^{p-4}+\ldots+\binom{p-1}{p-2} D^{\frac{p-3}{2}} P+\binom{p-1}{p} D^{\frac{p-1}{2}} P^{-1} \\
2^{p-2} U_{p-1}=(p-1) P^{p-2}+(p-1) D P^{p-4}+\ldots+(p-1) D^{\frac{p-3}{2}} P+0 D^{\frac{p-1}{2}} P^{-1} \\
\frac{2^{p-2} U_{p-1}}{P} \equiv-\left[P^{p-3}+D P^{p-5}+\ldots+D^{\frac{p-3}{2}}\right] \equiv-\frac{P^{p-1}-D^{\frac{p-1}{2}}}{P^{2}-D}(\bmod p) \\
2^{p-2} \bar{U}_{p-1}\left(P^{2}-D\right) \equiv-\left(P^{2}\right)^{\frac{p-1}{2}}+D^{\frac{p-1}{2}} \equiv \varepsilon(p)-\sigma(p)(\bmod p) \\
\text { Thus, if } \sigma \varepsilon=\sigma(p) \times \varepsilon(p)=1, \text { then } p \mid \bar{U}_{p-1}=\bar{U}_{p-\sigma \epsilon} .
\end{gathered}
$$

Property (8.4.4) page 197
If $p$ is an odd prime and $p \nmid Q$, then: $V_{p-\sigma \varepsilon} \equiv 2 \sigma Q^{\frac{1-\sigma \varepsilon}{2}}(\bmod p)$.

Theorem 2 (8.4.1) If $p$ is an odd prime and $p \nmid Q R D$, then:

$$
\begin{cases}p \left\lvert\, \bar{V}_{\frac{p-\sigma \epsilon}{2}}\right. & \text { when } \sigma=-\tau \\ p \left\lvert\, \bar{U}_{\frac{p-\sigma \epsilon}{2}}\right. & \text { when } \sigma=\tau\end{cases}
$$

Definition (8.4.2) page 197 of $\omega(m)$ : For a given $m$, denote by $\omega=$ $\omega(m)$ the value of the least positive integer $k$ such that $m \mid \bar{U}_{k}$. If $\omega(m)$ exists, $\omega(m)$ is called the rank of apparition of $m$.

Theorem 3 (8.4.3)

$$
\left\{\begin{array}{l}
\text { If } k \mid n, \text { then } \bar{U}_{k} \mid \bar{U}_{n} \\
\text { If } m \mid \bar{U}_{n}, \text { then } \omega(m) \mid n .
\end{array}\right.
$$

Theorem 4 (8.4.5) If $(m, Q)=1$, then $\omega(m)$ exists.

Theorem 5 (8.4.6) If $(N, 2 Q R D)=1$ and $N \pm 1$ is the rank of apparition of $N$, then $N$ is a prime.

Theorem 6 (8.4.7) If $(N, 2 Q R D)=1, \bar{U}_{N \pm 1} \equiv 0(\bmod N)$ and $\bar{U}_{\frac{N+1}{q}} \neq 0(\bmod N)$ for each distinct prime divisor $q$ of $N \pm 1$, then $N$ is a prime.

## Proof:

Let $\omega=\omega(N)$. We see that $\omega \mid N \pm 1$, but $\omega \nmid(N \pm 1) / q$. Thus if $q^{\alpha} \| N \pm 1$, then $q^{\alpha} \mid \omega$. It follows that $\omega=N \pm 1$ and $N$ is a prime by Theorem 5 (8.4.6).

$$
3 \quad F_{n} \text { prime } \Longrightarrow F_{n} \left\lvert\, \bar{V}_{\frac{F_{n}^{2}-1}{}}\right. \text { and } F_{n} \mid S_{2^{n-2}}
$$

Let $N=F_{n}=2^{2^{n}}+1$ with $n \geq 1$ be an odd prime.
Let: $P=\sqrt{R}, R=7, Q=1$, and $D=P^{2}-4 Q=3$.
Hereafter we compute $(3 / \mathrm{N})$ and $(7 / \mathrm{N})$ :

- $(3 / \mathrm{N}):\left\{\begin{array}{l}N \text { odd prime } \\ N=(4)^{2^{n-1}}+1 \equiv 2(\bmod 3) \\ (\mathrm{N} / 3)=(2 / 3)=-1 \\ (3 / \mathrm{N})=(\mathrm{N} / 3) \times(-1)^{\frac{3-1}{2} \frac{N-1}{2}}\end{array} \quad\right.$ then: $(3 / \mathrm{N})=-1$.
- $(7 / \mathrm{N})$ : We have: $\left\{\begin{array}{lll}2^{3} & \equiv 1 & (\bmod 7) \\ 2^{3 a+b} & \equiv 2^{b} & (\bmod 7)\end{array}\right.$

With $2^{n} \equiv b(\bmod 3)$, we have: $2^{2^{n}}+1 \equiv 2^{b}+1(\bmod 7)$. Then we study the exponents of 2 , modulo 3 . We have: $2^{2} \equiv 1(\bmod 3)$, and:

$$
\begin{aligned}
& \text { If } n=2 m \quad\left\{\begin{array}{l}
2^{2 m} \equiv 1(\bmod 3) \\
N=2^{2^{2 m}}+1 \equiv 2^{1}+1 \equiv 3(\bmod 7) \\
(\mathrm{N} / 7)=(3 / 7)=-1
\end{array}\right. \\
& \text { If } n=2 m+1\left\{\begin{array}{l}
2^{2 m+1} \equiv 2(\bmod 3) \\
N=2^{2^{2 m+1}}+1 \equiv 2^{2}+1 \equiv 5(\bmod 7) \\
(\mathrm{N} / 7)=(5 / 7)=-1
\end{array}\right.
\end{aligned}
$$

Finally, we have: $(7 / \mathrm{N})=(\mathrm{N} / 7)(-1)^{\frac{7-1}{2} 2^{2^{n}}}=(\mathrm{N} / 7)=-1$.

$$
\text { So we have: }\left\{\begin{array}{l}
\varepsilon=(\mathrm{D} / \mathrm{N})=(3 / \mathrm{N})=-1 \\
\sigma=(\mathrm{R} / \mathrm{N})=(7 / \mathrm{N})=-1 \\
\tau=(\mathrm{Q} / \mathrm{N})=(1 / \mathrm{N})=+1
\end{array}\right.
$$

Since $\sigma=-\tau, \sigma \epsilon=+1$, and $F_{n} \nmid Q R D$ with $n \geq 1$, then by Theorem 2 (8.4.1) we have:

$$
F_{n} \text { prime } \Longrightarrow F_{n} \left\lvert\, \bar{V}_{\frac{F_{n}-1}{2}}=V_{2^{2^{n}-1}}\right.
$$

By (1) we have: $V_{2^{k-1}}=S_{k-2}$ and thus, with $k=2^{n}: F_{n} \mid S_{2^{n}-2}$.

## $4 \quad F_{n} \mid S_{2^{n}-2} \Longrightarrow F_{n}$ is a prime

Let $N=F_{n}$ with $n \geq 1$. By (1) we have: $N\left|S_{2^{n}-2} \Longrightarrow N\right| V_{2^{2}-1}$.
And thus, by (4.2.6) page $74\left(U_{2 a}=U_{a} V_{a}\right)$, we have: $N \mid \bar{U}_{2^{2}}$.
By (4.3.6) page 85: $\left(\left(V_{n}, U_{n}\right) \mid 2 Q^{n}\right.$ for any $\left.n\right)$, and since $Q=1$, then: $\left(V_{2^{2^{n}-1}}, \bar{U}_{2^{2^{n}-1}}\right)=2$ and thus: $N \nmid \bar{U}_{2^{2^{n}-1}}$ since $N$ odd.

With $\omega=\omega(N)$, by Theorem 3 (8.4.3) we have : $\omega \mid 2^{2^{n}}$ and $\omega \nmid 2^{2^{n}-1}$. This implies: $\omega=2^{2^{n}}=N-1$. Then $N-1$ is the rank of apparition of N , and thus by Theorem 5 (8.4.6) N is a prime.

This test of primality for Fermat numbers has been communicated to the community of number theorists working on this area on mersenneforum.org (http://www.mersenneforum.org/showthread.php?t=2130) in May 2004, and the proof was finalized in September 2004.
Then, in a private communication, Robert Gerbicz provided a proof of the same theorem based on $Q[\sqrt{21}]$.

## 5 Numerical Examples

$\left(\bmod F_{2}\right) S_{0}=5 \stackrel{1}{\mapsto} 6 \stackrel{2}{\mapsto} S_{2^{2}-2} \equiv 0$
$\left(\bmod F_{3}\right) S_{0}=5 \stackrel{1}{\mapsto} 23 \stackrel{2}{\mapsto} 13 \stackrel{3}{\mapsto} 167 \stackrel{4}{\mapsto} 131 \stackrel{5}{\mapsto} 197=-60 \stackrel{6}{\mapsto} S_{2^{3}-2} \equiv 0$
$\left(\bmod F_{4}\right) S_{0}=5 \stackrel{1}{\mapsto} 23 \stackrel{2}{\mapsto} 527 \stackrel{3}{\mapsto} 15579 \stackrel{4}{\mapsto} 21728 \stackrel{5}{\mapsto} 42971 \stackrel{6}{\mapsto} 1864 \stackrel{7}{\mapsto}$ $1033 \stackrel{8}{\mapsto} 18495 \stackrel{9}{\mapsto} 27420 \stackrel{10}{\mapsto} 15934 \stackrel{11}{\mapsto} 2016 \stackrel{12}{\mapsto} 960 \stackrel{13}{\mapsto} 4080 \stackrel{14}{\mapsto} S_{2^{4}-2} \equiv 0$

## 6 Appendix: Table of $U_{i}$ and $V_{i}$

With $n=2,3,4$, we have the following (not proven) properties (modulo $F_{n}$ ):

The values of $\overline{U^{\prime}}{ }_{n}$ and $\overline{V^{\prime}}{ }_{n}(n \geq 1)$ with $(P, Q)=(\sqrt{3},-1)$ can be built by:

$$
\left\{\begin{array} { l l } 
{ { \overline { U ^ { \prime } } } _ { 2 n } } & { = \overline { U } _ { 2 n } } \\
{ { \overline { U ^ { \prime } } } _ { 2 n + 1 } } & { = \overline { V } _ { 2 n + 1 } }
\end{array} \quad \left\{\begin{array}{ll}
{\overline{V^{\prime}}}_{2 n} & =\bar{V}_{2 n} \\
{\overline{V^{\prime}}}_{2 n+1} & =\bar{U}_{2 n+1}
\end{array}\right.\right.
$$

Values of $U_{i}$ and $V_{i}$ in previous tables can be computed easily by the following PARI/gp programs:
$U_{2 j+1}: \mathrm{UO}=1$;U1=6; for(i=1,N, U0=5*U1-UO; U1=5*U0-U1; print(4*i+1," ",UO); print(4*i+1," ",U1))

| $i$ | $U_{i}$ | $V_{i}$ |  |  |
| ---: | ---: | :--- | ---: | :--- |
| 0 | 0 | $\times \sqrt{7}$ | 2 |  |
| 1 | 1 |  | 1 | $\times \sqrt{7}$ |
| 2 | 1 | $\times \sqrt{7}$ | 5 |  |
| 3 | 6 |  | 4 | $\times \sqrt{7}$ |
| 4 | 5 | $\times \sqrt{7}$ | 23 |  |
| 5 | 29 |  | 19 | $\times \sqrt{7}$ |
| 6 | 24 | $\times \sqrt{7}$ | 110 |  |
| 7 | 139 |  | 91 | $\times \sqrt{7}$ |
| 8 | 115 | $\times \sqrt{7}$ | 527 |  |
| 9 | 666 |  | 436 | $\times \sqrt{7}$ |
| 10 | 551 | $\times \sqrt{7}$ | 2525 |  |
| 11 | 3191 |  | 2089 | $\times \sqrt{7}$ |
| 12 | 2640 | $\times \sqrt{7}$ | 12098 |  |
| 13 | 15289 |  | 10009 | $\times \sqrt{7}$ |
| 14 | 12649 | $\times \sqrt{7}$ | 57965 |  |
| 15 | 73254 |  | 47956 | $\times \sqrt{7}$ |
| 16 | 60605 | $\times \sqrt{7}$ | 277727 |  |
| 17 | 350981 |  | 229771 | $\times \sqrt{7}$ |
| 18 | 290376 | $\times \sqrt{7}$ | 1330670 |  |
| 19 | 1681651 |  | 1100899 | $\times \sqrt{7}$ |
| 20 | 1391275 | $\times \sqrt{7}$ | 6375623 |  |
| 21 | 8057274 |  | 5274724 | $\times \sqrt{7}$ |
| 22 | 6665999 | $\times \sqrt{7}$ | 30547445 |  |
| 23 | 38604719 |  | 25272721 | $\times \sqrt{7}$ |
| 24 | 31938720 | $\times \sqrt{7}$ | 146361602 |  |
| 25 | 18496331 |  | 121088881 | $\times \sqrt{7}$ |
| 26 | 153027601 | $\times \sqrt{7}$ | 701260565 |  |
| 27 | 886226886 |  | 580171684 | $\times \sqrt{7}$ |
| 28 | 733199285 | $\times \sqrt{7}$ | 3359941223 |  |
| 29 | 4246168109 |  | 2779769539 | $\times \sqrt{7}$ |
| 30 | 3512968824 | $\times \sqrt{7}$ | 16098445550 |  |
| 31 | 20344613659 |  | 13318676011 | $\times \sqrt{7}$ |
| 32 | 16831644835 | $\times \sqrt{7}$ | 77132286527 |  |
| 33 | 97476900186 |  | 63813610516 | $\times \sqrt{7}$ |
| 34 | 80645255351 | $\times \sqrt{7}$ | 369562987085 |  |
| 35 | 467039887271 |  | 305749376569 | $\times \sqrt{7}$ |
| 36 | 386394631920 | $\times \sqrt{7}$ | 1770682648898 |  |
| 37 | 2237722536169 |  | 1464933272329 | $\times \sqrt{7}$ |
| 38 | 1851327904249 | $\times \sqrt{7}$ | 8483850257405 |  |
| 39 | 10721572793574 |  | 7018916985076 | $\times \sqrt{7}$ |
| 40 | 8870244889325 | $\times \sqrt{7}$ | 40648568638127 |  |
|  |  |  |  |  |
|  |  |  |  |  |

Table 1: $P=8 \sqrt{7}, \quad Q=1$

| $i$ | $\bar{U}_{i}\left(\bmod F_{1}\right)$ | $\bar{V}_{i}\left(\bmod F_{1}\right)$ |
| ---: | ---: | ---: |
| 0 | 0 | 2 |
| 1 | 1 | 1 |
| 2 | 1 | $\mathbf{0}$ |
| 3 | 1 | 4 |
| 4 | $\mathbf{0}$ | 3 |
| $\mathbf{5}$ | 4 | 4 |
| 6 | 4 | 0 |
| 7 | 4 | 1 |
| 8 | 0 | 2 |

Table 2: $P=\sqrt{7}, \quad Q=1$, Modulo $F_{1}$

| $i$ | $\bar{U}_{i}\left(\bmod F_{2}\right)$ | $\overline{V_{i}\left(\bmod F_{2}\right)}$ |
| ---: | ---: | ---: |
| 0 | 0 | 2 |
| 1 | 1 | 1 |
| 2 | 1 | 5 |
| 3 | 6 | 4 |
| 4 | 5 | 6 |
| 5 | 12 | 2 |
| 6 | 7 | 8 |
| 7 | 3 | 6 |
| 8 | 13 | $\mathbf{0}$ |
| 9 | 3 | 11 |
| 10 | 7 | 9 |
| 11 | 12 | 15 |
| 12 | 5 | 11 |
| 13 | 6 | -4 |
| 14 | 1 | -5 |
| 15 | 1 | -1 |
| 16 | $\mathbf{0}$ | -2 |
| $\mathbf{1 7}$ | -1 | -1 |
| 18 | -1 | -5 |
| 19 | -6 | -4 |
| 20 | -5 | 11 |
| 21 | 5 | 15 |
| 22 | 10 | 9 |
| 23 | 14 | 11 |
| 24 | 4 | 0 |

Table 3: $P=\sqrt{7}, \quad Q=1$, Modulo $F_{2}$

| $i$ | $\bar{U}_{i}\left(\bmod F_{3}\right)$ | $\bar{V}_{i}\left(\bmod F_{3}\right)$ |
| ---: | ---: | ---: |
| 0 | 0 | 2 |
| 1 | 1 | 1 |
| 2 | 1 | 5 |
| 3 | 6 | 4 |
| 4 | 5 | 23 |
| 8 | 115 | 13 |
| 16 | 210 | 167 |
| 32 | 118 | 131 |
| 64 | 38 | 197 |
| 128 | 33 | $\mathbf{0}$ |
| 192 | 38 | 60 |
| 224 | 118 | 126 |
| 240 | 210 | 90 |
| 248 | 115 | -13 |
| 252 | 5 | -23 |
| 253 | 6 | -4 |
| 254 | 1 | -5 |
| 255 | 1 | -1 |
| 256 | $\mathbf{0}$ | -2 |
| $\mathbf{2 5 7}$ | -1 | -1 |
| 258 | -1 | -5 |
| 259 | -6 | -4 |
| 260 | -5 | -23 |

Table 4: $P=\sqrt{7}, \quad Q=1$, Modulo $F_{3}$

| $i$ | $\bar{U}_{i}\left(\bmod F_{4}\right)$ | $\bar{V}_{i}\left(\bmod F_{4}\right)$ |
| ---: | ---: | ---: |
| 2048 | 9933 | 15934 |
| 4096 | 567 | 2016 |
| 8192 | 28943 | 960 |
| 16384 | 63129 | 4080 |
| 32768 | 5910 | $\mathbf{0}$ |
| 65532 | 5 | -23 |
| 65533 | 6 | -4 |
| 65534 | 1 | -5 |
| 65535 | 1 | -1 |
| 65536 | $\mathbf{0}$ | -2 |
| $\mathbf{6 5 5 3 7}$ | -1 | -1 |
| 65538 | -1 | -5 |
| 65539 | -6 | -4 |
| 65540 | -5 | -23 |

Table 5: $P=\sqrt{7}, \quad Q=1$, Modulo $F_{4}$

