A new property of Mersenne numbers:

$$
M_{q}=(8 x)^{2}-(3 q y)^{2}=(1+S q)^{2}-(D q)^{2}
$$

Tony Reix (Tony.Reix@laposte.net)
2004, 11th of September
Theorem 1 (Reix) Let $M_{q}=2^{q}-1$ (q prime >3) be a Mersenne number. For each pair (a, b) of positive integers such that: $M_{q}=a b$, there exists a unic pair (x, y) or (S, D) of positive integers such that:

$$
\text { I: } \quad M_{q}=(8 x)^{2}-(3 q y)^{2} \quad \text { II: } \quad M_{q}=(1+S q)^{2}-(D q)^{2}
$$

(I discovered property I some years ago and I produced a complete, correct, but long and awful proof. I then received the following nicer proof from an anonymous reviewer. I discovered property II recently and proof is mine.)
Proof of I: Lets have: $M_{q}=2^{q}-1=a b$ (with q odd prime) and:

$$
\left\{\begin{array}{l}
A=(a+b) / 2 \\
B=(a-b) / 2
\end{array}\right.
$$

Then, for each pair (a, b) is associated a unic pair (A, B) such that:

$$
\begin{gathered}
M_{q}=A^{2}-B^{2} \quad\left[=\left((a+b)^{2}-(a-b)^{2}\right) / 4=4 a b / 4=a b\right] \\
\text { So we must prove: }\left\{\begin{array}{l}
8 \mid A \\
3 \mid B \\
q \mid B
\end{array}\right.
\end{gathered}
$$

- Since $2 \equiv-1(\bmod 3)$, we have $2^{2 p+1} \equiv(-1)^{2 p+1} \equiv-1(\bmod 3)$. Then with $q=2 p+1$ we have $a \times b=M_{q}=2^{2 p+1}-1 \equiv-2 \equiv 1(\bmod 3)$. Since $1 \times 1 \equiv 2 \times 2 \equiv 1(\bmod 3)$ we have $a \equiv b(\bmod 3)$, and thus $3 \mid(a-b)$ and $3 \mid B$.
- Since every prime divisor of M_{q} is congruent to $1(\bmod q)$, we have $a \equiv b \equiv 1(\bmod q)$ and $q \mid(a-b)$ and then $q \mid B$.
- Since every prime divisor of M_{q} is congruent to: $\pm 1(\bmod 8)$ we have: $b \equiv \pm 1(\bmod 8)$, and $b^{2} \equiv 1(\bmod 16)$.
Since (with q prime $>3) M_{q} \equiv-1(\bmod 16)$, then: $a b \equiv-1(\bmod 16)$, and thus: $2 b A=a b+b^{2}=b(a+b) \equiv-1+1 \equiv 0(\bmod 16)$.
Finally, since b is odd, that entails: $a+b \equiv 0(\bmod 16)$, and $16 \mid(a+b)$, and thus: $8 \mid A$.
Proof of II: Since a and b divide M_{q}, we have: $a=1+2 q \alpha$ and $b=1+2 q \beta$. Thus: $M_{q}=a b=(1+2 q \alpha)(1+2 q \beta)=1+2 q(\alpha+\beta)+4 q^{2} \alpha \beta$.
With $\alpha>\beta$, lets have: $S=\alpha+\beta, P=\alpha \beta$, and $D=\alpha-\beta$. We have the property: $S^{2}-D^{2}=4 P$. Thus: $M_{q}=1+2 S q+4 P q^{2}=1+2 S q+\left(S^{2}-D^{2}\right) q^{2}$ and finally: $M_{q}=(1+S q)^{2}-(D q)^{2}$.

