A new property of Mersenne numbers:

\[M_q = (8x)^2 - (3qy)^2 = (1 + Sq)^2 - (Dq)^2 \]

Tony Reix (Tony.Reix@laposte.net)
2004, 11th of September

Theorem 1 (Reix) Let \(M_q = 2^q - 1 \) (\(q \) prime > 3) be a Mersenne number. For each pair \((a, b)\) of positive integers such that: \(M_q = ab \), there exists a unique pair \((x, y)\) or \((S, D)\) of positive integers such that:

- **I**: \(M_q = (8x)^2 - (3qy)^2 \)
- **II**: \(M_q = (1 + Sq)^2 - (Dq)^2 \)

(I discovered property I some years ago and I produced a complete, correct, but long and awful proof. I then received the following nicer proof from an anonymous reviewer. I discovered property II recently and proof is mine.)

Proof of I: Let have:
\[
\begin{align*}
M_q &= 2^q - 1 = ab \quad \text{(with } q \text{ odd prime)} \\
\{ &A = (a + b)/2 \\
& B = (a - b)/2
\end{align*}
\]

Then, for each pair \((a, b)\) is associated a unique pair \((A, B)\) such that:
\[
M_q = A^2 - B^2 = ((a + b)^2 - (a - b)^2)/4 = 4ab/4 = ab
\]

So we must prove:
\[
\begin{align*}
8 &\mid A \\
3 &\mid B \\
q &\mid B
\end{align*}
\]

- Since \(2 \equiv -1 \pmod{3} \), we have \(2^{2p+1} \equiv (-1)^{2p+1} \equiv -1 \pmod{3} \). Then with \(q = 2p + 1 \) we have \(a \times b = M_q = 2^{2p+1} - 1 \equiv -2 \equiv 1 \pmod{3} \). Since \(1 \times 1 \equiv 2 \times 2 \equiv 1 \pmod{3} \) we have \(a \equiv b \pmod{3} \), and thus \(3 \mid (a - b) \) and \(3 \mid B \).

- Since every prime divisor of \(M_q \) is congruent to \(1 \pmod{q} \), we have \(a \equiv b \equiv 1 \pmod{q} \) and \(q \mid (a - b) \) and then \(q \mid B \).

- Since every prime divisor of \(M_q \) is congruent to: \(\pm 1 \pmod{8} \) we have: \(b \equiv \pm 1 \pmod{8} \), and \(b^2 \equiv 1 \pmod{16} \).

Since (with \(q \) prime > 3) \(M_q \equiv -1 \pmod{3} \), then: \(ab \equiv -1 \pmod{16} \), and thus: \(2bA = ab + b^2 = b(a + b) \equiv -1 + 1 \equiv 0 \pmod{16} \).

Finally, since \(b \) is odd, that entails: \(a + b \equiv 0 \pmod{16} \), and \(16 \mid (a + b) \), and thus: \(8 \mid A \).

Proof of II: Since \(a \) and \(b \) divide \(M_q \), we have: \(a = 1 + 2q\alpha \) and \(b = 1 + 2q\beta \).

Thus: \(M_q = ab = (1 + 2q\alpha)(1 + 2q\beta) = 1 + 2q(\alpha + \beta) + 4q^2\alpha\beta \).

With \(\alpha > \beta \), let have: \(S = \alpha + \beta \), \(P = \alpha\beta \), and \(D = \alpha - \beta \). We have the property: \(S^2 - D^2 = 4P \). Thus: \(M_q = 1 + 2S + 4Pq^2 = 1 + 2S + (S^2 - D^2)q^2 \) and finally: \(M_q = (1 + Sq)^2 - (Dq)^2 \). \(\square \)