A new property of Mersenne numbers:

$$M_q = (8x)^2 - (3qy)^2 = (1 + Sq)^2 - (Dq)^2$$

Tony Reix (Tony.Reix@laposte.net) 2004, 11th of September

Theorem 1 (Reix) Let $M_q = 2^q - 1$ (q prime > 3) be a Mersenne number. For each pair (a,b) of positive integers such that: $M_q=ab$, there exists a unic pair (x, y) or (S, D) of positive integers such that:

I:
$$M_q = (8x)^2 - (3qy)^2$$
 II: $M_q = (1 + Sq)^2 - (Dq)^2$

(I discovered property ${f I}$ some years ago and I produced a complete, correct, but long and awful proof. I then received the following nicer proof from an anonymous reviewer. I discovered property II recently and proof is mine.)

Proof of I: Lets have: $M_q=2^q-1=ab$ (with q odd prime) and: $\begin{cases} A=(a+b)/2\\ B=(a-b)/2 \end{cases}$

$$\begin{cases} A = (a+b)/2 \\ B = (a-b)/2 \end{cases}$$

Then, for each pair (a, b) is associated a unic pair (A, B) such that:

$$M_q = A^2 - B^2 \quad [= ((a+b)^2 - (a-b)^2)/4 = 4ab/4 = ab]$$
So we must prove:
$$\begin{cases} 8 \mid A \\ 3 \mid B \\ a \mid B \end{cases}$$

- Since $2 \equiv -1 \pmod{3}$, we have $2^{2p+1} \equiv (-1)^{2p+1} \equiv -1 \pmod{3}$. Then with q=2p+1 we have $a\times b=M_q=2^{2p+1}-1\equiv -2\equiv 1\pmod 3$. Since $1 \times 1 \equiv 2 \times 2 \equiv 1 \pmod{3}$ we have $a \equiv b \pmod{3}$, and thus $3 \mid (a - b)$ and $3 \mid B$.
- Since every prime divisor of M_q is congruent to 1 \pmod{q} , we have $a \equiv b \equiv 1 \pmod{q}$ and $q \mid (a - b)$ and then $q \mid B$.
- Since every prime divisor of M_q is congruent to: $\pm 1 \pmod 8$ we have: $b \equiv \pm 1 \pmod{8}$, and $b^2 \equiv 1 \pmod{16}$.

Since (with q prime > 3) $M_q \equiv -1 \pmod{16}$, then: $ab \equiv -1 \pmod{16}$, and thus: $2b\hat{A} = ab + b^2 = b(a+b) \equiv -1 + 1 \equiv 0 \pmod{16}$.

Finally, since b is odd, that entails: $a+b\equiv 0\pmod{16}$, and $16\mid (a+b)$, and thus: $8 \mid A$.

Proof of II: Since a and b divide M_q , we have: $a=1+2q\alpha$ and $b=1+2q\beta$. Thus: $M_q = ab = (1 + 2q\alpha)(1 + 2q\beta) = 1 + 2q(\alpha + \beta) + 4q^2\alpha\beta$.

With $\alpha > \beta$, lets have: $S = \alpha + \beta$, $P = \alpha \beta$, and $D = \alpha - \beta$. We have the property: $S^2 - D^2 = 4P$. Thus: $M_q = 1 + 2Sq + 4Pq^2 = 1 + 2Sq + (S^2 - D^2)q^2$ and finally: $M_q = (1 + Sq)^2 - (Dq)^2$.