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This paper presents how two theorems dealing with the Lucas-Lehmer Test
for Mersenne numbers (LLT) were found and proven.
These theorems deal with computing the number of cycles of length L that
appear in a Digraph under x2 or x2−2 modulo a Mersenne primeMq = 2q−1,
where q is prime and L | q − 1.

1 Introduction

The Lucas-Lehmer Test says that a Mersenne number Mq = 2q − 1 (where q
is prime) is prime iff Mq | Sq−2, where S0 = 4, Si+1 = S2

i − 2.

Let call llt the function: llt : x 7→ x2 − 2 mod Mq.
Let call llt⊥ the function: llt⊥ : x 7→ x(x2 − 3) mod Mq.

Let S be the finite set defined by: S = {x integer ; 0 ≤ x < Mq} and let:
f : S 7→ S be a function.

We define a directed graph Gf whose vertices are given by the elements of S
and whose directed edges are (x, f(x)) for each x ∈ S.

2 Previous personal experimental research

Long time ago, I studied the topology of Gllt.
I (re)discovered that the structure of the digraph Gllt is made of:
One Tree: one reversed complete binary tree of height q − 1 ending in
0, attached to the node −2 attached to the node 2 with a cycle of length 1,
where the 2q−2 roots of the tree are all the numbers built by: R0 = 4 , Ri+1 =
llt⊥(Ri); and:
Cycles: a set of cycles of length L dividing q − 1.

The existence and some properties of the Tree are well-known and proven.
But at that time I found no study of the properties of the Cycles.
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I computed the number of cycles of length L for q = 3, 5, 7, 13, 17, 19, 31, as
shown in Table 9, by means of a C program that computes all pairs (x, x2 − 2
(mod Mq)), finds the cycles and counts cycles of same length.

L = 1 2 3 4 5 6 8 9 10 12 15 16 18 30
q =

3 2
5 2 1 1
7 2 2 4

13 2 1 2 1 9 165
17 2 1 3 30 2032
19 2 2 4 56 7252
31 2 2 6 4 48 2182 17894588

Table 1: Number of loops of length L under x2−2 modulo the first Mersennes.

3 Example with q = 5

The Figure 1 shows the tree and cycles for q = 5.
As shown in table 9, there are two cycles of length 1: (2 ↔ 2) and (M5−1 ↔
M5 − 1) , one cycle of length 2: (12 → −13 → 12), and one cycle of length
4: (3 → 7 → −15 → 6 → 3).

4 A problem by Daniel Shanks

Later, I discovered that Daniel Shanks, in his book ”Solved and Unsolved
Problems in Number Theory” (1962 Edition), has already studied the topol-
ogy of the Digraph Gllt.
Page 215, in Chapter ”Supplementary Comments, Theorems, and Exercises”,
Shanks provides the complete Digraph Gllt for q = 5, plus several useful
properties. At the end of the page, he asked the reader to: ”Develop a
general theory for all prime Mp, proving the main theorems, if you can”.
But he provided no hints !

5 Quadratic maps over GF (p)

In their paper: ”On the iteration of certain quadratic maps over GF (p)”,
Troy Vasiga and Jeffrey Shallit consider the properties of certain graphs
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Figure 1: Tree and Cycles under x2 − 2 modulo M5.

based on iteration of the quadratic maps x→ x2 and x→ x2−2 over a finite
field GF (p).
They provide several interesting theorems about the tails and cycles of the
iterations x→ x2 and x→ x2 − 2 modulo any prime.
They also focus on Fermat and Mersenne primes, proving the following the-
orems:

Theorem 1 (5) When p = 2q − 1, a Mersenne prime, the digraph Gx→x2

consists of cycles whose length divides q−1. Off each element in these cycles
there hangs a single element with tail length 1.

Corollary 1 (3) Let p be an odd prime with p− 1 = 2τ · ρ, ρ odd. For each
positive integer divisor d of ρ, Gx→x2 contains ϕ(d)/(ordd2) cycles of length
ordd2. There are ρ elements in all these cycles, and off each element in these
cycles there hang reversed complete binary trees of height τ − 1 containing
2τ − 1 elements.

Theorem 2 (17) When p = 2q−1, a Mersenne prime, the digraph Gx→x2−2

consists of

(i) A reversed complete binary tree of height q − 1 with root 0, attached to
the node −2, which is attached to the node 2 with a cycle of length 1 on this

3



node. The nodes in this tree are given by θn + θ−n, 0 ≤ n ≤ 2q−1 , where θ
is a zero of X2 − 4X + 1.

(ii) A set of cycles of length dividing q − 1. Off each element in these cycles
there hangs a single element with tail length 1. The nodes in these cycles are
given by 3n + 3−n , 1 ≤ n ≤ 2q−1 − 2.

Corollary 2 (15) Let p be an odd prime with p− 1 = 2τ · ρ, p+ 1 = 2τ ′

· ρ′,
ρ, ρ′ odd. For each divisor d > 1 of ρ, G = Gx→x2−2 contains ϕ(d)/(2ord′d2)
cycles of length ord′d2. There are ρ elements in all these cycles, and off each
element in these cycles there hang reversed complete binary trees of height
τ − 1 containing 2τ − 1 elements.
Similarly, for each divisor d′ > 1 of ρ′, there exists ϕ(d′)/(2ord′d′2) cycles
of length ord′d′2 and off each element in these cycles there hang reversed
complete binary trees of height τ ′ − 1 containing 2τ ′

− 1 elements.
Finally, the element 0 is the root of a complete binary tree of height τ − 2
(respectively τ ′ − 2) when p ≡ 1 (mod 4) (respectively p ≡ 3 (mod 4)), and
G also contains the directed edges (0,−2), (−2, 2), (2, 2).

6 L is independent of q under x2 modulo Mq

Thanks to Shallit’s formula, I wrote a PARI/gp program that enabled me to
compute the number of cycles under x2 modulo a Mersenne prime Mq for:
q = 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, providing one or several values for each
L from 1 to 12, and 14, 15, 18, 20, 21, 22, 30, 42, 44, 53, 60, 63, 88, 106, 126.

Since all values found for each L were identical whatever the value of q, I
guessed that the number of cycles of length L under x2 modulo a Mersenne
prime Mq does NOT depend on q.

The number of cycles of length L for L = 1..12+ is shown in table 2.

L 1 2 3 4 5 6 7 8 9 10 11 12 14 15
ψ(L) 1 1 2 3 6 9 18 30 56 99 186 335 1161 2182

Table 2: Number of cycles of length L under x2 for L = 1..12+.

Here is the PARI/gp program which enabled to compute table 2.

VS(q) = {
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cyc = divisors(q-1);

lencyc = vector(q-1);

fac = divisors(2^(q-1)-1);

l = length(fac);

for(i=2, l,

or = znorder(Mod(2, fac[i]));

ep = eulerphi(fac[i]);

lencyc[or] += ep/or;

);

for(i=1, q-1,

if(lencyc[i] != 0,

print(i, " ", lencyc[i]);

);

);

}

As an example, the number of cycles of length L under x2 for q = 127 is
given by table 3.

L ψ(L)
1 1
2 1
3 2
6 9
7 18
9 56

14 1161
18 14532
21 99858
42 104715342801
63 146402730743693304

126 675163426430433459179525995420973028

Table 3: Number of cycles of length L under x2 modulo 2127 − 1.
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7 OEIS A001037

The OEIS (The On-Line Encyclopedia of Integer Sequences!) is aimed at
helping people to check if a sequence of integers is already known or not.

Typing the sequence: 1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335 on page:
http://www.research.att.com/∼njas/sequences/index.html , I was able
to check that my sequence from 1 to 12 was identical to the beginning of se-
quence A001037, and that the other values of my sequence matched the
A001037 sequence:
[1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594,
52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395,
18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806] .

This sequence is defined as:
”Number of degree-n irreducible polynomials over GF (2)”, or:
”Number of n-bead necklaces with beads of 2 colors when turning over is not
allowed and with primitive period n” or:
”Number of binary Lyndon words of length n.”

See: http://www.research.att.com/∼njas/sequences/A001037 .

And this sequence is built by the formula:

A001037(n) =
1

n

∑

d|n

µ(
n

d
)2d

8 Art Of Problem Solving forum - ZetaX

Then, on the ”Art of Problem Solving” forum, I asked if someone were able
to prove that ψ(L) = A001037(L).

ZetaX quickly provided the theorems and their proofs, as de-
scribed in next section.

See: http://www.artofproblemsolving.com/Forum/forum-6.html .
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9 Cycles under x2 mod a Mersenne prime

Theorem 3 (ZetaX-1) The number of cycles of length L (L divides q− 1)
in the digraph Gx→x2 modulo a Mersenne prime 2q − 1 is:

ψ(L) =
1

L

∑

d|L

µ(
L

d
)2d

Proof:
By the existence of a primitive root modulo 2q − 1, we can see it also as the
following problem: Find the number of cycles of length l under the action
x→ 2x seen modulo 2q − 2.
Now canonically lets find the number of solutions of 2nx ≡ x(mod 2q −
2) ⇐⇒ (2n − 1)x ≡ 0 (mod 2q − 2), since this is the number of x that are
part of a cycle having an order dividing n.
Since gcd(2q − 2, 2n − 1) = 2gcd(q−1,n) − 1, we have only to consider n that
divides q − 1 and there are 2n − 1 solutions then.
Let ψ(l) be the number of elements of cycles of exactly length l.
Now we have 2n−1 =

∑

d|n ψ(d). By the Moebius-inversion-formula, we get:

ψ(n) =
∑

d|n

µ(
n

d
)(2d − 1) =

∑

d|n

µ(
n

d
)2d −

∑

d|n

µ(
n

d
) =

∑

d|n

µ(
n

d
)2d

But by dividing through n (since every cycle of length n contains n elements)
we get the desired formula.

�

Now looking back, we see that this argumentation doesn’t work for the cycles
of length 1, but for these we can verify it directly.

10 Cycles under x2 − 2 modulo Mq prime

Theorem 4 (ZetaX-2) The number of cycles of length L (L divides q−1 =
2su) in the digraph Gx→x2−2 modulo a Mersenne prime 2q − 1 is:

ς(L) =
1

L





∑

d|L

µ

(

L

d

)

2d −
∑

2s|d|L

µ

(

L

d

)

2d−1





Definition: A primitive root is a ζ, such that ζk, k ∈ {1, 2, ..., p − 1} gives
all different prime residue classes (mod p), so {1, 2, 3, ..., p − 1}. They exist
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modulo every power of an odd prime and some other cases and also in every
finite field. Especially, they exist modulo ever prime p.

Now fix a primitive root ζ (mod p). Any prime residue class x(mod p) can
now be seen as some power x ≡ ζk (mod p) for suitable k. Since when also
y ≡ ζ l (mod p), it follows that xy ≡ ζkζ l = ζk+l ≡ ζ(k+l)(mod p−1) (mod p)
(by Fermat’s theorem), so you can see multiplication (mod p) as addition
(mod p − 1) (excluding 0). So considering these powers k, l is like taking
logarithm in the real numbers.

But now back to the (less elementary !) problem concerning x2 − 2:
Proof:
Let p = 2q−1 be a prime (so q is also prime). Lets work in the field Fp or Fp2

respectively (so the field with p elements and it’s quadratic extension): Let
a0, a1, a2, ..., an = a0 be a cycle (of length dividing n). When we can write
a0 = x+x−1, we would get by induction that ak = x2k

+x−2k

for all k. Such
x does not necessary exist in Fp, but, since it is a quadratic equation, for
sure in Fp2 .
So a = x+ x−1 is part of a cycle of length dividing n iff:

x2n

+ x−2n

= an = a0 = x+ x−1

⇐⇒ x2n+1

− x2n+1 − x2n−1 + 1 = 0

⇐⇒ (x2n+1 − 1)(x2n−1 − 1) = 0

yielding two equations to solve in Fp2 (under the additional condition of
x+ x−1 ∈ Fp):

(a) x2n+1 = 1

(b) x2n−1 = 1

Since p2 − 1 = (p+ 1)(p− 1) = 2q+1(2q−1 − 1), all these solutions are already
in Fp (because of order/primitive roots again).
Now that means we are looking for x ∈ Fp with ord(x) | 2n + 1 or ord(x) |
2n − 1.

Special case: n | p− 1 and n is odd.
Now also 2n | p−1, and (because of 2n+1; 2n−1 | 22n−1 | 2q−1−1) there are
already all 2n + 1 solutions for (a) and all 2n − 1 solutions for (b) contained
in Fp (this statement is again based on the existence of a primitive root).
The only solution to both equations is x = 1. But when x is a solution, also
x−1 is a solution, but x and it’s inverse (and only those, since a quadratic
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equation has just two roots) give the same a = x + x−1, and the only self-
inverse x are ±1 (and −1 is for sure not a solution, 1 is).
So there are exactly 2n+1+2n−1

2
= 2n different such a. Now again using Moe-

bius inversion gives the result for the odd n dividing q − 1.

General case:
Let kn be the number of solutions of (a).
Let ln be the number of solutions of (b).
Then the number of cycles of length dividing n is (kn + ln)/2.
Now by the same reasons as before, we get that kn = gcd(2n+1, 2q−1−1) and
ln = gcd(2n − 1, 2q−1 − 1), thus, the problem is solved after using Moebius
again.
Note that most of this arguing works for all primes, not just that of Mersenne
type.

To simplify the formula, we just have to consider divisors of q − 1 as length
of cycles again, so let n be a divisor of q − 1 from now on.
Let ψ(n) denote the number of elements that are part of a cycle of a length
dividing n.

Claim:
ψ(n) =

{

2n iff 2n | q − 1
2n−1 otherwise

Proof:
Since n | q − 1, we have gcd(2n − 1, 2q−1 − 1) = 2n − 1, so there are 2n − 1
solutions for (b).
Since 2n + 1 and 2n − 1 are co-primes, we get:

gcd(2n + 1, 2q−1 − 1) =
gcd(2n − 1, 2q−1 − 1) · gcd(2n + 1, 2q−1 − 1)

gcd(2n − 1, 2q−1 − 1)

=
gcd(22n − 1, 2q−1 − 1)

gcd(2n − 1, 2q−1 − 1)
.

Now if 2n | q − 1, we get:

gcd(22n − 1, 2q−1 − 1)

gcd(2n − 1, 2q−1 − 1)
=

22n − 1

2n − 1
= 2n + 1

and there are (2n − 1 + 2n + 1)/2 = 2n solutions then.

If otherwise 2n ∤ q − 1, we get:

gcd(22n − 1, 2q−1 − 1)

gcd(2n − 1, 2q−1 − 1)
=

2n − 1

2n − 1
= 1
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and there are (2n − 1 + 1)/2 = 2n−1 solutions then.

Now when ς(n) describes the number of cycles of length exactly n, we get
that n · ς(n) is the number of elements that are part of such a cycle and by
Moebius we reach:

n · ς(n) =
∑

d|n

µ
(n

d

)

ψ(d)

or equivalently:

ς(n) =
1

n

∑

d|n

µ
(n

d

)

ψ(d).

To write it without that cases, let q − 1 = 2su, where u is odd. Then the
formula reduces to:

ς(n) =
1

n





∑

2s∤d|n

µ
(n

d

)

2d +
∑

2s|d|n

µ
(n

d

)

2d−1





and to:

ς(n) =
1

n





∑

d|n

µ
(n

d

)

2d −
∑

2s|d|n

µ
(n

d

)

2d−1





�

Note that for the divisors of q−1
2

this is simply the formula from the x2 case !

Here is the PARI/gp program that computes the number of cycles of length
L under llt(x) = x2 − 2 modulo a Mersenne number.

H(q)=

{

s=0; while((q-1)%(2^s) == 0, s++); s--;

print("q= ", q, " = 1 + 2^", s, ".", (q-1)/2^s, "\n");

dq = divisors(q-1);

ldq = length(dq);

print("L= ", 1, " -> 1");

for(j=2, ldq,

n = dq[j];

dn = divisors(n);

ldn = length(dn);

S = 0;
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for(i=1, ldn,

ddn = dn[i];

S += moebius(n/ddn)*2^(ddn);

if(ddn%(2^s) == 0,

S -= moebius(n/ddn)*2^(ddn-1);

);

);

if(S != 0, print("L= ", n, " -> ", S/n););

);

print("\n");

}

11 Another proof by maxal (GIMPS forum)

One can show that the cycles in the LLT Digraph under the mapping x →
x2 − 2 correspond to the cycles in the group Z2q−1−1 under the mapping
x→ 2x where elements x and −x are considered the same.

For example, let q = 5. Then in Z15 we have the following cycles:
0 → 0
1 → 2 → 4 → 8 → 1
3 → 6 → 12 → 9 → 3
5 → 10 → 5
7 → 14 → 13 → 11 → 7

If elements x and −x are considered the same then we have the following
cycles:
0 → 0
1 → 2 → 4 → 8 → 1 and 7 → 14 → 13 → 11 → 7 represent the same cycle.
3 → 6 → 12 → 9 → 3 becomes 3 → 6 → −3
5 → 10 → 5 becomes 5 → −5
i.e., there are two 1-cycles, one 2-cycle, and one 4-cycle.

We call conjugate cycles containing x and −x for some x. In the example
above, 1 → 2 → 4 → 8 → 1 and 7 → 14 → 13 → 11 → 7 are conjugate
cycles while 3 → 6 → 12 → 9 → 3 is self-conjugate cycle.

Denote by c(k) the number of k-cycles in Z2q−1−1 and by c′(k) the number
of self-conjugate k-cycles. Then the number of k-cycles in the LLT Digraph
is C(k) = (c(k) − c′(k))/2 + c′(2k). (Gluing each pair of elements x and −x
into a single one contracts the cycles in Z2q−1−1. The contracted k-cycles are
formed by: 1) pairs of conjugate k-cycles which glue into a single k-cycle
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under the contraction. The number of such pairs is (c(k) − c′(k))/2. 2) self-
conjugate 2k-cycles which shrink their length by the factor of 2 under the
contraction. The number of such cycles is c′(2k)).

For q = 5 we have c(1) = 2, c(2) = 1, c(4) = 3 and c′(1) = 0, c′(2) = 1,
c′(4) = 1 implying C(1) = 2, C(2) = 1, C(4) = 1.

It is easy to see that c(k) =
∑

d|k µ(k/d)(2d − 1)/k if k divides (q − 1), and

c(k) = 0 otherwise.

Similarly, one can show that
1) for odd s, c′(s) = 0 except c′(1) = 1.
2) for odd s and for t >= 1 such that 2ts divides (q−1), c′(2ts) =

∑

d|s µ(s/d)22t−1d/(2ts)
for t >= 1 and odd s.
3) for odd s and for t >= 1 such that 2ts does not divide (q− 1), c′(2ts) = 0.

In order to simplify things consider two functions that do not depend on q:
c1(k) =

∑

d|k µ(k/d)(2d − 1)/kc2(2ts) =
∑

d|s µ(s/d)22t−1d/(2ts) for t >= 1

and odd s, and c2(k) = 0 for odd k > 1 and c2(1) = 1.

It can be shown that c2(2m) = (c1(m) + c2(m))/2 and, thus, (c1(k) −
c2(k))/2 + c2(2k) = c1(k).

Now let’s compute the number of k-cycles in the LLT Digraph for k dividing
(q−1). For such k, we have c(k) = c1(k) and c′(k) = c2(k) but not necessary
c′(2k) = c2(2k) since 2k may not divide (q−1). This happens when (q−1)/k
is odd number in which case the summand c2(2k) happens to be excessive
implying C(k) = c1(k) − c2(2k).

Therefore, C(k) = 0 if k does not divide (q − 1), C(k) = c1(k) if k divides
(q−1) and (q−1)/k is even number, C(k) = c1(k)−c2(2k) = (c1(k)−c2(k))/2
if k divides (q − 1) and (q − 1)/k is odd number.

Properties:
C(k) = 0 if k does not divide (q − 1).
C(k) = c1(k) if k divides (q − 1) and (q − 1)/k is even number.
C(k) = c1(k)− c2(2k) = (c1(k)− c2(k))/2 if k divides (q− 1) and (q− 1)/k
is odd number.
c1(k) = A059966(k)
c2(2k) = A000048(k)
c1(k) − c2(2k) = A051841(k)
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L = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
q =

3 2
*5 2 1 1
7 2 2 4

*13 2 1 2 1 9 165
*17 2 1 3 30 2032
19 2 2 4 56
31 2 2 6 4 48 2182

*61 2 1 1 6 9 99 165 2182
*89 2 1 3 14 186
127 2 2 4 18 56 576
107 2

*521 2 1 3 6 14 99 630
607 2 2 4

1279 2 2 4 56
2203 2 2 4

*2281 2 1 2 3 6 9 14 99 335 2182
*3217 2 1 2 3 9 30 335 2032
*4253 2 1 1
4423 2 2 4 186

*9689 2 1 3 18 14 1161
*9941 2 1 1 6 18 99 1161

*11213 2 1 1
*19937 2 1 3 18 30 1161
*21701 2 1 1 6 18 99 1161
*23209 2 1 2 3 9 14 335
*44497 2 1 2 3 9 30 56 335 2032
86243 2 630

110503 2 2 4 18 56 576
*132049 2 1 2 3 9 18 30 56 335 1161 2032
216091 2 2 6 4 18 56 48 576 2182
756839 2

*859433 2 1 3 18 14
1257787 2 2 4 56

*1398269 2 1 1
*2976221 2 1 1 6 99 630
*3021377 2 1 3 30 4080
*6972593 2 1 3 30 186 2032

*13466917 2 1 2 1 9 56 165
20996011 2 2 6 4 18 56 48 576 2182
24036583 2 3 4
25964951 2 6 48 186

*30402457 2 1 2 3 9 18 14 335 1161

Table 4: Number of loops of length L under x2−2 modulo the first Mersennes.
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12 Nber of cycles of length < 17 under x2 − 2

13 Nber of cycles for Mersenne composites

L = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 28
q =
11 r 2 2 2 2 9 1 2 1
11 t 2 6 40
23 r 2 2 15 10 1
23 t 2 186 95232
29 r 6 4 14 4 16 80 4 56 328 2 256
29 t 2 2 1 18 186 1161 4792905

Table 5: Number of cycles of length L under x2−2 modulo the first Mersennes
composites. (r:real t:theoretical)

14 Ratio (Mq − 1)/order(3,Mq)

Let call: η(q, b) the number of distinct numbers bn + 1/bn (mod Mq) for q,

and θ(q, b) = Mq−1

η(q,b)
.

Let call: ρ(q, b) = Mq−1

order(b,Mq)
.

The table 6 shows that there is a relationship between η(q, b) and ρ(q, b):

For q = 3, 5, 7, 17, 19 we have: order(3,Mq)/η(q, 3) = 2.
For q = 13, 31 we have: (order(3,Mq) + 2)/η(q, 3) = 2.

15 2η(3,Mq) = order(3,Mq) + 2 Proof by ZetaX

Let p be any odd prime. Let f(x) := x + 1
x

mod p, then we want the size
(lets call it η(k, p)) of the set {f(kn)|n ∈ N}.
First lets find out how often f(x) ≡ f(y) mod p with x, y 6≡ 0 mod p
happens: This means x+ 1

x
≡ y+ 1

y
mod p ⇐⇒ x2y+ y ≡ xy2 + x mod p

⇐⇒ (xy− 1)(x− y) ≡ 0 mod p. This means that either x ≡ y mod p, the
trivial case, or xy ≡ 1 mod p. But: when x ≡ ±1 mod p, then only the
case x ≡ y mod p can occur.
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q θ(q, 3) θ(q, q) θ(q, 3q) θ(q, 6q) ρ(q, 3) ρ(q, q) ρ(q, 3q) ρ(q, 6q)
3 1 1 1 1 2 2

5 1 24+4
η(q,q)

= 10 24

η(q,6q)
= 8 1 10 3 15

7 1 1 26

η(q,6q)
= 2 1 1 2 2

13 212+8
η(q,3)

= 9 212+4
η(q,q)

= 10 1 9 10 13 1

17 1 216

η(q,q)
= 2 216+2

η(q,6q)
= 3 1 2 3 3

19 1 1 218+2
η(q,6q)

= 6 1 1 6 6

31 230+2
η(q,3)

= 3 3 1 2 2

61 9 90 99 99
89 1 10 3 3

107 1 3 2 2
127 3 1 2 2
521 1 2 31 31
607 3 3 126 126

1279 3 1 2 2

Table 6: .

Look at the set Pow(k) := {kn mod p|n ∈ Z} (we can use Z instead of
N because of Fermat’s Little Theorem). It has size |Pow(k)| = ord(k, p).
Additionally, we can pair up the elements kn mod p and k−n mod p for
each n, since they give the same value f(kn) ≡ f(k−n) mod p, and only
those are equal (note that 1,−1 mod p will be left alone, but each noted as
”pair” with one element). Since different pairs give different values, we have
that η(k, p) = ”number of such pairs”. Thus when −1 ∈ Pow(k) (1 is always

in the set), there will be ord(k,p)−2
2

+ 2 = ord(k,p)+2
2

pairs, thus by the above

η(k, p) = ord(k,p)+2
2

⇐⇒ 2η(k, p) = ord(k, p) + 2. Similar when −1 is not in
the set: 2η(k, p) = ord(k, p) + 1
This for example gives η(3, 7) = 4.
To find out if −1 is in the set, we need to know if the order of k mod p is even
or odd (this suffices to know: when ord(k, p) would be odd, we couldn’t have
2η(k, p) = ord(k, p) + 2 mod 2, and analogous for the other case). When

s is the biggest integer with 2s|p− 1, we could calculate k
p−1

2s mod p (since
p−1
2s is the biggest odd divisor of p− 1) and look if it is 1 mod p or not (the

order is odd iff it is 1 mod p). When 4 ∤ p − 1, we just ask whether k is a
quadratic residue mod p or not, which can be checked by Jacobi symbols.
Special case k = 3, p = 2q − 1: Then 4 ∤ p− 1, thus we use Legendre symbols
(Jacobi is not needed since both numbers are prime) and the law of quadratic
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reciprocity:
(

3
2q−1

)

= −
(

2q−1
3

)

= −1. This shows that the order of 3 mod p
is even. Thus for Mersenne primes p = Mq, it is: 2η(3, p) = ord(3, p) + 2.

16 Conjecture:
Mq−1

order(3,Mq)
= 3n with n = 0, 1, 2

Based on the data in table 7, we have the conjecture:

Mq − 1

order(3,Mq)
= 3n with n = 0, 1, 2

It seems that the conjecture is wrong for: q = 3217 . But I do not understand
the explanation ...

q (Mq − 1)/order(3,Mq)
3 1
5 1
7 1

13 9
17 1
19 1
31 3
61 9
89 1

107 1
127 3
521 1
607 3

1279 3

Table 7: .

17 Loops under x3 − 3x Modulo a Mersenne

I computed the number of cycles of length L for q = 3, 5, 7, 13, 17, 19, 31, as
shown in Table 9, by means of a C program that computes all pairs (x, x3−3x
(mod Mq)), finds the cycles and counts cycles of same length.
There are at least 1 cycle of length 2i, for i = 0 . . . q− 2. They are related to
the tree under x2 − 2 and do not appear here below, for the q such that Mq

is prime.
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L = 1 2 3 4 5 6 8 9 10 12 15 16 18 36 128 256
q =

3 2
5 2 2
7 2 2

11 9 18 32 53
13 2 2 6 12 30
17 2 2 2 4 2 84
19 2 2 12 14 36 252
31 2

Table 8: Number of cycles of length L under x3 − 3x modulo the first
Mersennes, without the cycles related to the tree under x2 − 2.

We name Cq,n,l a cycle of length l under the llt function of degree n, modulo
the Mersenne prime Mq = 2q − 1 .
We recall that llt0 : x 7→ 2, llt1 : x 7→ x, llt2 : x 7→ x2 − 2, llt3 : x 7→ x3 − 3x .
For q = 7, there are 2 cycles C7,2,3 and 4 cycles C7,2,6 . Under x3 − 3x, 3 of
the C7,2,6 are connected to the 4th cycle C7,2,6 ; and this cycle is connected
to one of the C7,2,3, which is connected to it-self. The second cycle C7,2,3 is
connected to node 126, which is connected to node 2, connected to it-self.

18 Loops under x2 − 2 Modulo a Fermat

L = 1 3 5 7 15
n =

1 2
2 2 1
3 2 9
4 2 1 3 1091

Table 9: Number of cycles of length L under x2 − 2 modulo the first Fermat
primes.

Obviously, the length of cycles divide 2n − 1 .
Looking at OEIS, this looks like the following suites: A000048 (and A056303,
A114702), A060172, A066313, A060481.
2 formulae:
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ψ(L) =
1

2L

∑

odd d|L

µ(d)2
L
d

ψ(L) =
1

L

∑

d|L

µ(d)a(
L

d
)
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