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I’m looking for a complete proof for the following conjecture:

Conjecture 1 Mq = 2q − 1 . S0 = 32 + 1/32, Si+1 = S2
i − 2 (mod Mq)

Mq is a prime iff Sq−1 ≡ S0 (mod Mq)

And we have:
∏q−1

1 Si ≡ 1 (mod Mq) when Mq is prime

I perfectly know that this test cannot speed up the proof of primality of
a Mersenne number. But the method used for proving it could be used to
prove that a Mersenne is not prime faster than the classical LLT. Or it could
be used for other numbers for which no LLT test does exist.

This conjecture makes use of the properties of the cycles of length q−1 that
appear in the Digraph under x2 − 2 modulo a Mersenne prime ; though the
LLT makes use of the properties of the tree of the same Digraph.
It has been checked with huge values of q.

Thanks to the help of H.C. Williams, who suggested me to use the little
Fermat theorem, the first part of the conjecture has been proved.
Now, how can we prove the converse ?

1 Definitions

The first part of the proof makes use of the Lucas Sequence method, as
described in many papers and books, like ”The Little Book of Bigger Primes”
by Paulo Ribenboim or like ”Édouard Lucas and Primality Testing” by Hugh
C. Williams.

Here after, (a | b) is the Legendre symbol.
All references to theorems apply to properties of Lucas Sequences as given
by P. Ribenboim in his book ”The Litlle Book of Bigger Primes” in 2.IV
pages 44-etc .

Since q is prime, we have: Mq ≡ 1 (mod 6q) .

Let: β = 32 and α̃ ≡ 1/β (mod Mq) .
Since Mq is prime, α̃ is the only integer such that 0 < α̃ < Mq .
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There are an infinity of α > Mq such that α ≡ α̃ (mod Mq).
Here below, we explain how to compute α̃ and some α .

When q ≡ 1 (mod 3) and since q is odd, we have: q ≡ 1 (mod 6) . Thus
Mq = 2q − 1 = 26k+1 = 2(23)2k − 1 ≡ 1 (mod 9) . Thus 8Mq + 1 ≡ 0
(mod 9) = 9α̃ and α̃ = 8Mq+1

9 ≡ 1/9 (mod Mq) .

When q ≡ 2 (mod 3) and since q is odd, we have: q ≡ 5 (mod 6) . Thus
Mq = 2q − 1 = 26k+5 = 32(23)2k − 1 ≡ 4 (mod 9) . Thus 2Mq + 1 ≡ 0
(mod 9) = 9α̃ and α̃ = 2Mq+1

9 ≡ 1/9 (mod Mq) .

With q > 5, we always have: β < α̃ < α .

P = α + β
Q = αβ ≡ 1 (mod Mq)√

D = α− β

And thus
√

D always is a non-null positive integer.

And thus: D = P 2− 4Q = (α− β)2 ≡ P 2− 4 (mod Mq) always is a square.

Un(P, Q) = Un = αn−βn

α−β = PUn−1 −QUn−2, U0 = 0, U1 = 2 .

Vn(P,Q) = Vn = αn + βn = PVn−1 −QVn−2, V0 = 1, V1 = P .

(D | Mq) = 1 since D is a square.

Let: α = (Mq−1
3 )

2
. It is easy to see that α ≡ 1/9 = α̃ (mod Mq).

If q ≡ 1 (mod 3) then α = (6qk)2 and gcd(P, Q) = 9 × gcd((2qk)2 + 1, 9).
Since x2 ≡ 2 (mod 9) has no solution, then: gcd(P, Q) = 9 .

If q ≡ 2 (mod 3) then α = (1+3k)2 and gcd(P, Q) = gcd((1+3k)2 +9, (1+
3k)2). Since x | (1 + 3k)2 and x | (1 + 3k)2 + 9 only if x = 3 or x = 9 and
since 3 - 1 + 3k then gcd(P, Q) = 1 .

Let’s define: Sn = V2n .

It means: Sn+1 ≡ S2
n − 2 (mod Mq), S0 = V20 = V1 = P .

So: Sq−1 ≡ S0 (mod Mq) is equivalent to: VMq+1

2

≡ V1 (mod Mq) .

2 Mq is a prime ⇒ Mq | Sq−1 − S0

Now, lets try to prove: Mq is a prime ⇒ Mq | VMq+1

2

− V1 .

Since Mq is a prime and (D | Mq) = 1, the period of (Un) and (Vn)
(mod Mq) divides Mq − 1 .
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And thus: VMq ≡ V1 ≡ P (mod Mq) and VMq+1 ≡ V2 ≡ P 2 − 2 (mod Mq),
and UMq ≡ 1 (mod Mq) .

By IV.2b, V 2
Mq+1

2

≡ VMq+1 + 2 ≡ V2 + 2 ≡ P 2 ≡ V 2
1 (mod Mq) .

So, either we have: Mq | VMq+1

2

− V1 or Mq | VMq+1

2

+ V1 .

Now: VMq−1

2

= α
Mq−1

2 + β
Mq−1

2 ≡ (3Mq−1)−1 + 3Mq−1 (mod Mq) .

Since Mq is a prime (and thus coprime to 3), by Fermat little theorem we
have: 3Mq−1 ≡ 1 (mod Mq) .
And thus: VMq−1

2

≡ 1−1 + 1 ≡ 2 (mod Mq) .

First: since Q = αβ ≡ +1 (mod Mq) ; since D ≡ (−80/9)2 ≡ (34−1)2

34

(mod Mq) ; and since Mq is prime, that proves the condition of IV.23 :
Mq - 2QD .

Now, by IV.23, ψ(Mq) = Mq − (D | Mq) = Mq − 1 .

And then: UMq−1

2

≡ 0 (mod Mq) .

Now, by IV.5b, we have: VMq−1

2

= 2UMq+1

2

− PUMq−1

2

.

Since UMq−1

2

≡ 0 and VMq−1

2

≡ 2 (mod Mq) , then UMq+1

2

≡ 1 (mod Mq) .

By IV.7a, we have: UMq+1

2

V1 − U1VMq+1

2

≡ 2UMq−1

2

(mod Mq) and thus:

VMq+1

2

≡ P × 1− 2× 0 ≡ P (mod Mq) .

So we have: UMq−1

2

≡ 0 , UMq+1

2

≡ 1 , VMq−1

2

≡ 2 , VMq+1

2

≡ P (mod Mq) ,

proving that the period of (Un) and (Vn) (mod Mq) equals (Mq − 1)/2 !

So, at the end: VMq+1

2

≡ P ≡ V1 (mod Mq) and thus: Mq | VMq+1

2

− V1 .

And, equivalently: Mq | Sq−1 − S0 .

3 Mq | Sq−1 − S0 ⇒ Mq is a prime

And then, more difficult ! How to prove the converse ?
I have no idea yet ... Only some divisibility results.
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4 Examples

q = 5





M5 = 31
β = 9
α = 100 ≡ 7 (mod M5)

P = α + β = 109 ≡ 16 (mod M5)
Q = αβ = 900 ≡ 1 (mod M5)

gcd(P, Q) = 1
D = P 2 − 4 = 912 ≡ 4 (mod M5)

(mod M5) S0 = 16 17→ 6 27→ 3 37→ 7
4=q−17→ 16

q = 7





M7 = 127
β = 9
α = 1764 ≡ 113 (mod M7)

P = α + β = 1773 ≡ 122 (mod M7)
Q = αβ = 15876 ≡ 1 (mod M7)

gcd(P, Q) = 9
D = P 2 − 4 = 17552 ≡ 21 (mod M7)

(mod M7) S0 = 122 17→ 23 27→ 19 37→ 105 47→ 101 57→ 39
6=q−17→ 122

q = 13





M13 = 8191
β = 9
α = 7452900 ≡ 7281 (mod M13)

P = α + β = 7452909 ≡ 7290 (mod M13)
Q = αβ = 67076100 ≡ 1 (mod M13)

gcd(P,Q) = 9
D = P 2 − 4 = 74528912 ≡ 888 (mod M13)

(mod M13) S0 = 7290 17→ 890 27→ 5762 37→ 2519 47→ 5525 57→ 5957 67→ 2435 77→
7130 87→ 3552 97→ 2562 107→ 2851 117→ 2727

12=q−17→ 7290
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