A LLT-like test for Mersenne numbers, based on cycles of the Digraph under $x^{2}-2$ modulo a Mersenne prime

Tony Reix
2007, 10th of May - Updated 2008, 8th of September.

- Version 0.4

I'm looking for a complete proof for the following conjecture:
Conjecture $1 M_{q}=2^{q}-1 . S_{0}=3^{2}+1 / 3^{2}, S_{i+1}=S_{i}^{2}-2\left(\bmod M_{q}\right)$

$$
M_{q} \text { is a prime iff } S_{q-1} \equiv S_{0}\left(\bmod M_{q}\right)
$$

And we have: $\prod_{1}^{q-1} S_{i} \equiv 1\left(\bmod M_{q}\right)$ when M_{q} is prime

I perfectly know that this test cannot speed up the proof of primality of a Mersenne number. But the method used for proving it could be used to prove that a Mersenne is not prime faster than the classical LLT. Or it could be used for other numbers for which no LLT test does exist.

This conjecture makes use of the properties of the cycles of length $q-1$ that appear in the Digraph under $x^{2}-2$ modulo a Mersenne prime ; though the LLT makes use of the properties of the tree of the same Digraph.
It has been checked with huge values of q.
Thanks to the help of H.C. Williams, who suggested me to use the little Fermat theorem, the first part of the conjecture has been proved.
Now, how can we prove the converse ?

1 Definitions

The first part of the proof makes use of the Lucas Sequence method, as described in many papers and books, like "The Little Book of Bigger Primes" by Paulo Ribenboim or like "Édouard Lucas and Primality Testing" by Hugh C. Williams.

Here after, $(a \mid b)$ is the Legendre symbol.
All references to theorems apply to properties of Lucas Sequences as given by P. Ribenboim in his book "The Litlle Book of Bigger Primes" in 2.IV pages 44-etc .

Since q is prime, we have: $M_{q} \equiv 1(\bmod 6 q)$.
Let: $\beta=3^{2}$ and $\widetilde{\alpha} \equiv 1 / \beta\left(\bmod M_{q}\right)$.
Since M_{q} is prime, $\widetilde{\alpha}$ is the only integer such that $0<\widetilde{\alpha}<M_{q}$.

There are an infinity of $\alpha>M_{q}$ such that $\alpha \equiv \widetilde{\alpha}\left(\bmod M_{q}\right)$.
Here below, we explain how to compute $\widetilde{\alpha}$ and some α.
When $q \equiv 1(\bmod 3)$ and since q is odd, we have: $q \equiv 1(\bmod 6)$. Thus $M_{q}=2^{q}-1=2^{6 k+1}=2\left(2^{3}\right)^{2 k}-1 \equiv 1(\bmod 9)$. Thus $8 M_{q}+1 \equiv 0$ $(\bmod 9)=9 \widetilde{\alpha}$ and $\widetilde{\alpha}=\frac{8 M_{q}+1}{9} \equiv 1 / 9\left(\bmod M_{q}\right)$.
When $q \equiv 2(\bmod 3)$ and since q is odd, we have: $q \equiv 5(\bmod 6)$. Thus $M_{q}=2^{q}-1=2^{6 k+5}=32\left(2^{3}\right)^{2 k}-1 \equiv 4(\bmod 9)$. Thus $2 M_{q}+1 \equiv 0$ $(\bmod 9)=9 \widetilde{\alpha}$ and $\widetilde{\alpha}=\frac{2 M_{q}+1}{9} \equiv 1 / 9\left(\bmod M_{q}\right)$.
With $q>5$, we always have: $\beta<\widetilde{\alpha}<\alpha$.
$P=\alpha+\beta$
$Q=\alpha \beta \equiv 1\left(\bmod M_{q}\right)$
$\sqrt{D}=\alpha-\beta$
And thus \sqrt{D} always is a non-null positive integer.
And thus: $D=P^{2}-4 Q=(\alpha-\beta)^{2} \equiv P^{2}-4\left(\bmod M_{q}\right)$ always is a square.
$U_{n}(P, Q)=U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=P U_{n-1}-Q U_{n-2}, \quad U_{0}=0, U_{1}=2$.
$V_{n}(P, Q)=V_{n}=\alpha^{n}+\beta^{n}=P V_{n-1}-Q V_{n-2}, \quad V_{0}=1, \quad V_{1}=P$.
$\left(D \mid M_{q}\right)=1$ since D is a square.
Let: $\alpha=\left(\frac{M_{q}-1}{3}\right)^{2}$. It is easy to see that $\alpha \equiv 1 / 9=\widetilde{\alpha}\left(\bmod M_{q}\right)$.
If $q \equiv 1(\bmod 3)$ then $\alpha=(6 q k)^{2}$ and $\operatorname{gcd}(P, Q)=9 \times \operatorname{gcd}\left((2 q k)^{2}+1,9\right)$. Since $x^{2} \equiv 2(\bmod 9)$ has no solution, then: $\operatorname{gcd}(P, Q)=9$.
If $q \equiv 2(\bmod 3)$ then $\alpha=(1+3 k)^{2}$ and $\operatorname{gcd}(P, Q)=\operatorname{gcd}\left((1+3 k)^{2}+9,(1+\right.$ $\left.3 k)^{2}\right)$. Since $x \mid(1+3 k)^{2}$ and $x \mid(1+3 k)^{2}+9$ only if $x=3$ or $x=9$ and since $3 \nmid 1+3 k$ then $\operatorname{gcd}(P, Q)=1$.

Let's define: $S_{n}=V_{2^{n}}$.
It means: $S_{n+1} \equiv S_{n}^{2}-2\left(\bmod M_{q}\right), S_{0}=V_{2^{0}}=V_{1}=P$.
So: $S_{q-1} \equiv S_{0}\left(\bmod M_{q}\right)$ is equivalent to: $V_{\frac{M_{q}+1}{2}} \equiv V_{1}\left(\bmod M_{q}\right)$.

$2 \quad M_{q}$ is a prime $\Rightarrow M_{q} \mid S_{q-1}-S_{0}$

Now, lets try to prove: M_{q} is a prime $\Rightarrow M_{q} \left\lvert\, V_{\frac{M_{q}+1}{2}}-V_{1}\right.$.
Since M_{q} is a prime and $\left(D \mid M_{q}\right)=1$, the period of $\left(U_{n}\right)$ and $\left(V_{n}\right)$ $\left(\bmod M_{q}\right)$ divides $M_{q}-1$.

And thus: $V_{M_{q}} \equiv V_{1} \equiv P\left(\bmod M_{q}\right)$ and $V_{M_{q}+1} \equiv V_{2} \equiv P^{2}-2\left(\bmod M_{q}\right)$, and $U_{M_{q}} \equiv 1\left(\bmod M_{q}\right)$.
By IV.2b, $\quad V_{\frac{M_{q}+1}{2}}^{2} \equiv V_{M_{q}+1}+2 \equiv V_{2}+2 \equiv P^{2} \equiv V_{1}^{2} \quad\left(\bmod M_{q}\right)$.
So, either we have: $M_{q} \left\lvert\, V_{\frac{M_{q}+1}{2}}-V_{1}\right.$ or $M_{q} \left\lvert\, V_{\frac{M_{q}+1}{2}}+V_{1}\right.$.
Now: $V_{\frac{M_{q}-1}{2}}=\alpha^{\frac{M_{q}-1}{2}}+\beta^{\frac{M_{q}-1}{2}} \equiv\left(3^{M_{q}-1}\right)^{-1}+3^{M_{q}-1}\left(\bmod M_{q}\right)$.
Since M_{q} is a prime (and thus coprime to 3), by Fermat little theorem we have: $3^{M_{q}-1} \equiv 1\left(\bmod M_{q}\right)$.
And thus: $\frac{V_{\frac{M_{q}-1}{}}^{2}}{} \equiv 1^{-1}+1 \equiv 2\left(\bmod M_{q}\right)$.
First: since $Q=\alpha \beta \equiv+1\left(\bmod M_{q}\right) ;$ since $D \equiv(-80 / 9)^{2} \equiv \frac{\left(3^{4}-1\right)^{2}}{3^{4}}$ $\left(\bmod M_{q}\right)$; and since M_{q} is prime, that proves the condition of IV.23 : $M_{q} \nmid 2 Q D$.
Now, by $I V .23, \psi\left(M_{q}\right)=M_{q}-\left(D \mid M_{q}\right)=M_{q}-1$.
And then: $\frac{U_{M_{q}-1}^{2}}{} \equiv 0\left(\bmod M_{q}\right)$.
Now, by $I V .5 b$, we have: $V_{\frac{M_{q}-1}{2}}=2 U_{\frac{M_{q}+1}{2}}-P U_{\frac{M_{q}-1}{2}}$.
Since $U_{\frac{M_{q}-1}{2}} \equiv 0$ and $V_{\frac{M_{q}-1}{2}} \equiv 2\left(\bmod M_{q}\right)$, then $U_{\frac{M_{q}+1}{2}} \equiv 1\left(\bmod M_{q}\right)$.
By IV.7a, we have: $U_{\frac{M_{q}+1}{2}} V_{1}-U_{1} V_{\frac{M_{q}+1}{2}} \equiv 2 U_{\frac{M_{q}-1}{2}} \quad\left(\bmod M_{q}\right)$ and thus: $V_{\frac{M_{q}+1}{2}} \equiv P \times 1-2 \times 0 \stackrel{2}{\equiv} P \quad\left(\bmod M_{q}\right)^{2}$.
So we have: $U_{\frac{M_{q}-1}{2}} \equiv 0, U_{\frac{M_{q}+1}{2}} \equiv 1, V_{\frac{M_{q}-1}{2}} \equiv 2, V_{\frac{M_{q}+1}{2}} \equiv P\left(\bmod M_{q}\right)$, proving that the period of $\left(U_{n}^{2}\right)$ and $\left(V_{n}\right)\left(\bmod M_{q}\right)$ equals $\left(M_{q}-1\right) / 2$!

So, at the end: $V_{\frac{M_{q}+1}{2}} \equiv P \equiv V_{1}\left(\bmod M_{q}\right)$ and thus: $M_{q} \left\lvert\, V_{\frac{M_{q}+1}{2}}-V_{1}\right.$.
And, equivalently: $M_{q} \mid S_{q-1}-S_{0}$.

$3 \quad M_{q} \mid S_{q-1}-S_{0} \Rightarrow M_{q}$ is a prime

And then, more difficult! How to prove the converse ?
I have no idea yet ... Only some divisibility results.

4 Examples

$\left(\bmod M_{5}\right) S_{0}=16 \stackrel{1}{\mapsto} 6 \stackrel{2}{\mapsto} 3 \stackrel{3}{\mapsto} 7 \stackrel{4=q-1}{\longmapsto} 16$
$\left(\bmod M_{7}\right) S_{0}=122 \stackrel{1}{\mapsto} 23 \stackrel{2}{\mapsto} 19 \stackrel{3}{\mapsto} 105 \stackrel{4}{\mapsto} 101 \stackrel{5}{\mapsto} 39 \stackrel{6=q-1}{\mapsto} 122$

$$
q=13\left\{\begin{array}{rlll}
M_{13} & =8191 & & \\
\beta & =9 & & \\
& \alpha & =7452900 & \equiv 7281 \\
& \left(\bmod M_{13}\right) \\
P=\alpha+\beta & =7452909 & \equiv 7290 & \left(\bmod M_{13}\right) \\
Q=\alpha \beta & =67076100 & \equiv 1 & \left(\bmod M_{13}\right) \\
& =\alpha c d(P, Q) & =9 & \\
D=P^{2}-4 & =7452891^{2} & \equiv 888 & \left(\bmod M_{13}\right)
\end{array}\right.
$$

$\left(\bmod M_{13}\right) S_{0}=7290 \stackrel{1}{\mapsto} 890 \stackrel{2}{\mapsto} 5762 \stackrel{3}{\rightharpoonup} 2519 \stackrel{4}{\mapsto} 5525 \stackrel{5}{\mapsto} 5957 \stackrel{6}{\mapsto} 2435 \stackrel{7}{\mapsto}$ $7130 \stackrel{8}{\hookrightarrow} 3552 \stackrel{9}{\mapsto} 2562 \stackrel{10}{\mapsto} 2851 \stackrel{11}{\hookrightarrow} 2727 \stackrel{12=q-1}{\hookrightarrow} 7290$

